Page 93 - 《软件学报》2021年第10期
P. 93

张维  等:动态手势理解与交互综述                                                               3065


                [43]    Dong C, Leu MC, Yin Z. American sign language alphabet recognition using Microsoft Kinect. In: Proc. of the 2015 IEEE Conf. on
                     Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2015.
                [44]    Song Y, Demirdjian D, Davis R. Tracking body and hands for gesture recognition: Natops aircraft handling signals database. In:
                     Proc. of the 9th IEEE Int’l Conf. on Automatic Face and Gesture Recognition (FG 2011). Santa Barbara, 2011.
                [45]    Molchanov P, Yang X, Gupta S, Kim KW, Tyree S, Kautz J. Online detection and classification of dynamic hand gestures with
                     recurrent 3D convolutional neural networks. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
                     IEEE, 2016.
                [46]    Tran D, Bourdev L, Fergus R, Torresani L, Paluri M. Learning spatiotemporal features with 3D convolutional networks. In: Proc.
                     of the IEEE Int’l Conf. on Computer Vision. 2015. 44894497.
                [47]    Camgoz NC, Hadfield S, Koller O, Bowden R. SubUNets: End-to-end hand shape and continuous sign language recognition. In:
                     Proc. of the IEEE Int’l Conf. on Computer Vision (ICCV). 2017.
                [48]    Cui  RP, Liu H, Zhang CS. Recurrent convolutional  neural  networks  for continuous  sign  language recognition  by  staged
                     optimization. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 16101618.
                [49]    Cao CQ, Zhang YF, Wu Y, Lu HQ, Cheng J. Egocentric gesture recognition using recurrent 3d convolutional neural networks with
                     spatiotemporal transformer modules. In: Proc. of the IEEE Int’l Conf. on Computer Vision (ICCV). IEEE Computer Society, 2017.
                [50]    Narayana P, Beveridge RJ, Draper BA. Gesture recognition: Focus on the hands. In: Proc. of the IEEE Conf. on Computer Vision
                     and Pattern Recognition. 2018. 52355244.
                [51]    Bambach  S, Lee S,  Crandall DJ, Chen Y. Lending a  hand: Detecting hands and  recognizing activities  in complex egocentric
                     interactions. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2015. 19491957.
                [52]    Rogez G, Supancic JS, Ramanan D. Understanding everyday hands in action from RGB-D images. In: Proc. of the IEEE Int’l Conf.
                     on Computer Vision. 2015. 38893897.
                [53]    Joshi A, Ghosh S, Betke M, Sclaroff S, Pfister H. Personalizing gesture recognition using hierarchical bayesian neural networks. In:
                     Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 455464.
                [54]    Hu  ZX,  Hu YM,  Liu J,  Wu  B,  Han DM,  Kurfess  T. 3D separable  convolutional neural network for dynamic hand gesture
                     recognition. Neurocomputing, 2018,318:151161.
                [55]    Sánchez J, Perronnin F, Mensink T, Verbeek J. Image classification with the fisher vector: Theory and practice. Int’l Journal of
                     Computer Vision, 2013,105(3):222245.
                [56]    Smedt DQ, Wannous H, Vandeborre JP. Heterogeneous hand gesture recognition using 3D dynamic skeletal data. In: Proc. of the
                     Computer Vision and Image Understanding. 2019.
                [57]    Zhao D, Liu Y, Li GC. Skeleton-based dynamic hand gesture recognition using 3D depth data. In: Proc. of the Electronic Imaging.
                     2018.
                [58]    Boulahia SY, Anquetil E, Multon F, Kulpa R. Dynamic hand gesture recognition based on 3D pattern assembled trajectories. In:
                     Proc. of the 7th Int’l Conf. on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2017. 16.
                [59]    Devineau G, Moutarde F, Xi W, Yang J. Deep learning for hand gesture recognition on skeletal data. In: Proc. of the 13th IEEE
                     Int’l Conf. on Automatic Face & Gesture Recognition (FG 2018). 2018. 106113.
                [60]    Chen XH, Wang GJ, Guo HK, Zhang CR, Wang H, Zhang L. Motion feature augmented recurrent neural network for skeleton-
                     based dynamic hand gesture recognition. In: Proc. of the IEEE Int’l Conf. on Image Processing. 2017.
                [61]    Hou JX, Wang GJ, Chen XH, Xue JH, Zhu R, Yang HZ. Spatial-temporal attention RES-TCN for skeleton-based dynamic hand
                     gesture recognition. In: Proc. of the European Conf. on Computer Vision. Cham: Springer-Verlag, 2018.
                [62]    Avola D, Bernardi M, Cinque L, Foresti LG, Massaroni C. Exploiting recurrent neural networks and leap motion controller for the
                     recognition of sign language and semaphoric hand gestures. IEEE Trans. on Multimedia, 2018,21(1):234245.
                [63]    Pisharady PK, Saerbeck M. Recent methods and databases in vision-based hand gesture recognition: A review. Computer Vision &
                     Image Understanding, 2015,141(C):152165.
                [64]    Guyon I, Athitsos V, Jangyodsuk P, Escalante HJ. The ChaLearn gesture dataset (CGD 2011). Machine Vision and Applications,
                     2014,25(8):19291951.
   88   89   90   91   92   93   94   95   96   97   98