Page 91 - 《软件学报》2021年第10期
P. 91
张维 等:动态手势理解与交互综述 3063
4) 对技术的依赖.每种界面使用何种技术进行手势的捕捉与处理,还没有一套统一的标准,在这种情况
下,尤其是大样本数的调查缺乏,使得各个工作的结论说服力不强.如果能够真正探明在每种应用场
景之下,人群对手势的选择具有怎样的本能反应,会极具指导意义.
随着传感器技术和人工智能技术的发展,手势交互界面将会越来越直观和自然,在虚拟现实和增强现实等
领域的应用也会更加普及.
References:
[1] Wachs JP, Kölsch M, Stern H, Edan Y, Vision-based hand-gesture applications. Communications of the ACM, 2011,54(2):6071.
[2] Xia SH, Gao L, Lai YK, Yuan MZ, Chai JX. A survey on human performance capture and animation. Journal of Computer Science
and Technology, 2017,32(3):536554.
[3] Gartner 2017. Gartner’s top 10 strategic technology trends for 2017. https://www.gartner.com/smarterwithgartner/gartners-top-10-
technology-trends-2017/
[4] Zhang FJ, Dai GZ, Peng XL. A survey on human-computer interaction in virtual reality. Scientia Sinica Informationis, 2016,46(12):
17111736 (in Chinese with English abstract).
[5] Huang J, Han DQ, Chen YN, Tian F, Wang HA, Dai GZ. A survey on human-computer interaction in mixed reality. Journal of
Computer-Aided Design & Computer Graphics, 2016,28(6):869880 (in Chinese with English abstract).
[6] Yu HC, Yang XD, Zhang YW, Zhong X, Chen YQ. A review on the recognition of mid-air gestures. Science & Technology Review,
2017,35(16):6473 (in Chinese with English abstract).
[7] Guo XH, Wang J, Xu GH. The latest progress in the research of hand function rehabilitation robot. Chinese Journal of
Rehabilitation Medicine, 2017,32(2):235240 (in Chinese with English abstract).
[8] Vuletic T, Duffy A, Hay L, McTeague C, Campbell G, Grealy M. Systematic literature review of hand gestures used in human
computer interaction interfaces. Int’l Journal of Human-Computer Studies, 2019,129:7494.
[9] Zhu YJ, Li CP, Ma WL, Xia SH, Zhang TL, Wang ZQ. Interaction feature modeling of virtual object in inmmersive virtual
assembly. Journal of Computer Research and Development, 2011,48(7):12981306 (in Chinese with English abstract).
[10] Xu YH, Li JR. Research and implementation of virtual hand interaction in virtual mechanical assembly. Machinery, Design &
Manufacture, 2014,5:262266 (in Chinese with English abstract).
[11] Wu HY, Zhang FJ, Liu YJ, Dai GZ. Research on key issues of vision-based gesture interfaces. Chinese Journal of Computers, 2019,
32(10):20302041 (in Chinese with English abstract).
[12] Ren P, Zhou MQ, Fan YC, Qian L, Shui WY. A rapid ancient architecture modeling method facing the gesture interaction. Trans.
of Beijing Institute of Technology, 2018,38(4):412416, 436 (in Chinese with English abstract).
[13] Wang XH, Hua W, Bao HJ. Design and development of a gesture-based interaction system for multi-projector tiled display wall.
Journal of Computer-Aided Design & Computer Graphics, 2007,19(3):318322, 328 (in Chinese with English abstract).
[14] Weichert F, Bachmann D, Rudak B, Fisseler D. Analysis of the accuracy and robustness of the leap motion controller. Sensors,
2013,13(5):63806393.
[15] Oikonomidis I, Kyriazis N, Argyros AA. Efficient model-based 3D tracking of hand articulations using Kinect. British Machine
Vision Conference (BMVC), 2011,3(1).
[16] Romero J, Tzionas D, Black JM. Embodied hands: Modeling and capturing hands and bodies together. In: Proc. of the SIGGRAPH
Asia 2017. 2017.
[17] Tompson J, Stein M, LeCun Y, Perlin K. Real-time continuous pose recovery of human hands using convolutional networks. ACM
Trans. on Graph, 2014,33(5):110.
[18] Oberweger M, Lepetit V. Improving fast and accurate 3D hand pose estimation. In: Proc. of the IEEE Int’l Conf. on Computer
Vision. 2017. 585594.
[19] Oberweger M, Wohlhart P, Lepetit V. Training a feed back loop for hand pose estimation. In: Proc. of the IEEE Int’l Conf. on
Computer Vision. 2015. 33163324.
[20] Ge LH, Liang H, Yuan JS, Thalmann D. Robust 3D hand pose estimation in single depth images: From single-view CNN to multi-
view CNNs. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 35933601.