Page 92 - 《软件学报》2021年第10期
P. 92

3064                                 Journal of Software  软件学报 Vol.32, No.10, October 2021

                [21]    Ge LH, Cai YJ, Weng GW, Yuan JS. Hand pointnet: 3D hand pose estimation using point sets. In: Proc. of the IEEE Conf. on
                     Computer Vision and Pattern Recognition. 2018. 84178426.
                [22]    Moon GS, Chang YJ, Lee KM. V2v-Posenet: Voxel-to-voxel prediction network for accurate 3D hand and human pose estimation
                     from a single depth map. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 50805088.
                [23]    Rad M, Oberweger M, Lepetit V. Feature mapping for learing fast and accurate 3D pose inference from synthetic images. In: Proc.
                     of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 46634672.
                [24]    Poier G, Schinagl D, Bischof H. Learning pose specific representations by predicting different views. In: Proc. of the IEEE Conf.
                     on Computer Vision and Pattern Recognition. 2018. 6069.
                [25]    Baek SR, Kim KI, Kim TK. Augmented skeleton space transfer for depth-based hand pose estimation. In: Proc. of the IEEE Conf.
                     on Computer Vision and Pattern Recognition. 2018. 83308339.
                [26]    Dibra E, Wolf T, Oztireli C, Gross M. How to refine 3D hand pose estimation from unlabelled depth data? In: Proc. of the 2017
                     Int’l Conf. on 3D Vision (3DV). IEEE, 2017. 135144.
                [27]    Wan CD, Probst T, Van Gool L, Yao A. Dense 3D regression for hand pose estimation. In: Proc. of the IEEE Conf. on Computer
                     Vision and Pattern Recognition. 2018. 51475156.
                [28]    Ye Q, Yuan S, Kim TK. Spatial attention deep net with partial PSO for hierarchical hyrid hand pose estimation. In: Proc. of the
                     European Conf. on Computer Vision. Springer-Verlag, 2016. 346361.
                [29]    Malik J, Elhayek A, Nummari F, Varanasi K, Tamaddon K, Heloir A, Stricker D. DeepHPS: End-to-end estimation of 3D hand
                     pose and shape by learning from synthetic depth. In: Proc. of the 2018 Int’l Conf. on 3D Vision (3DV). Verona, 2018. 110119.
                     [doi: 10.1109/3DV.2018.00023]
                [30]    Zimmermann C, Brox T. Learning to estimate 3D hand pose from single RGB images. In: Proc. of the IEEE Conf. on Computer
                     Vision and Pattern Recognition. 2017.
                [31]    Simon T, Joo H, Matthews I, Sheikh Y. Hand keypoint detection in single images using multiview bootstrapping. In: Proc. of the
                     IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 11451153.
                [32]    Mueller F, Bernard F, Sotnychenko O, Mehta D, Sridhar S, Casas D, Theobalt C. GANerated hands for real-time 3D hand tracking
                     from monocular RGB. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 4959.
                [33]    Spurr A, Song J, Park S, Hilliges O. Cross-modal deel variational hand pose estimation. In: Proc. of the IEEE Conf. on Computer
                     Vision and Pattern Recognition. 2018. 8998.
                [34]    Lien J, Gillian N, Karagozler ME, Amyhood P, Schwesig C, Olson E, Raja H, Poupyrev I. Soli: Ubiquitous gesture sensing with
                     millimeter wave radar. ACM Trans. on Graphics, 2016,35(4):119.
                [35]    Nymoen K, Haugen MR, Jensenius AR. MuMYO—Evaluating and exploring the MYO armband for musical interaction. In: Proc.
                     of the Int’l Conf. on New Interfaces for Musical Expression. The School of Music and the Center for Computation and Technology
                     (CCT), Louisiana State University, 2015.
                [36]    Han SC, Liu BB, Wang R, Ye YT, Twigg CD, Chen K. Online optical marker-based hand tracking with deep labels. ACM Trans.
                     on Graphics, 2018,34(7):166.
                [37]    Ng CW, Ranganath S. Real-time gesture recognition system and application. Image and Vision Computing, 2002,20:9931007.
                [38]    Cheng H, Yang L, Liu ZC. A survey on 3D hand gesture recognition. IEEE Trans. on Circuits and Systems for Video Technology,
                     2015,26:1.
                [39]    Elmezain M, Al-Hamadi A, Appenrodt J, Michaelis B. A hidden markov model-based continuous gesture recognition system for
                     hand motion trajectory. In: Proc. of the 19th Int’l Conf. on Pattern Recognition. 2008. 14.
                [40]    Keskin C, Cemgil AT, Akarun L. DTW based clustering to improve hand gesture recognition. In: Proc. of the Human Behavior
                     Understanding. 2011. 7281.
                [41]    Arici T, Celebi  S, Aydin AS, Temiz TT, Robust  gesture  recognition  using  feature  pre-processing and weighted  dynamic  time
                     warping. Multimedia Tools Application, 2014,72(3):30453062.
                [42]    Reyes M, Dominguez G, Escalera S. Feature weighting in dynamic time warping for gesture recognition in depth data. In: Proc. of
                     the IEEE Int’l Conf. on Computer Vision Workshops. 2011. 11821188.
   87   88   89   90   91   92   93   94   95   96   97