Page 203 - 《软件学报》2021年第10期
P. 203

肖辉辉  等:基于多策略的改进花授粉算法                                                            3175


                [22]    Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN. A dynamic neighborhood learning based particle swarm optimizer
                     for global numerical optimization. Information Sciences, 2012,209:1636. [doi: 10.1016/j.ins.2012.04.028]
                [23]    Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 2009,214(1):
                     108132. [doi: 10.1016/j.amc.2009.03.090]
                [24]    Lynn  N, Suganthan PN.  Heterogeneous comprehensive  learning particle swarm optimization with  enhanced exploration  and
                     exploitation. Swarm & Evolutionary Computation, 2015,24:1124. [doi: 10.1016/j.swevo.2015.05.002]
                [25]    Wu GH, Mallipeddi R, Suganthan PN, Wang R, Chen HK. Differential evolution with multi-population based ensemble of mutation
                     strategies. Information Sciences, 2016,329:329345. [doi: 10.1016/j.ins.2015.09.009]
                [26]    Nabil E. A modified flower pollination algorithm for global optimization. Expert Systems with Applications, 2016,57:192203.
                     [doi: 10.1016/j.eswa.2016.03.047]
                [27]    Ouadfel  S, Taleb-Ahmed A.  Social spiders  optimization and  flower  pollination algorithm for multilevel  image  thresholding: A
                     performance study. Expert Systems with Applications, 2016,55:566584. [doi: 10.1016/j.eswa.2016.02.024]
                [28]    Sayed SA, Nabil E, Badr A. A binary clonal flower pollination algorithm for feature selection. Pattern Recognition Letters, 2016,77:
                     2127. [doi: 10.1016/j.patrec.2016.03.014]
                [29]    Dubey HM, Pandit M, Panigrahi BK. A biologically inspired modified flower pollination algorithm for solving economic dispatch
                     problems in modern power systems. Cognitive Computation, 2015,7(5):594608. [doi: 10.1007/s12559-015-9324-1]

                 附中文参考文献:
                 [17]  肖辉辉,万常选,段艳明.一种基于复合形法的花朵授粉算法.小型微型计算机系统,2015,36(6):13731378.
                 [20]  肖辉辉,万常选,段艳明,谭黔林.基于引力搜索机制的花朵授粉算法.自动化学报,2017,43(4):576594. [doi: 10.16383/j.aas.2017.
                     c160146]



                              肖辉辉(1977-),男,博士,教授,主要研究                      万常选(1962-),男,博士,教授,博士生导
                              领域为智能计算及其应用,情感计算.                            师,CCF 杰出会员,主要研究领域为数据挖
                                                                           掘与知识工程,情感分析,Web 数据管理与
                                                                           信息检索.
   198   199   200   201   202   203   204   205   206   207   208