Page 111 - 《软件学报》2021年第10期
P. 111

王双成  等:基于贝叶斯网络的时间序列因果关系学习                                                       3083


                    进一步的工作是提高因果关系和元因果关系的学习效率与可靠性,在因果关系结构数据集中考虑混合因
                 果关系变量,为因果关系变量引入时滞因素,并将因果关系用于低频宏观经济指标时间序列的定性与定量因果
                 分析,以及将元因果关系用于高频金融指标时间序列的因果关系演化分析和未来发展趋势判断等.


                 References:
                 [1]    Ferreira C. Debt and economic growth in the European Union: A panel Granger causality approach. Int’l Advances in Economic
                     Research, 2016,22(2):131149.
                 [2]    Fredrik A, Katarzyna B, Sonja O. Lending for growth? A Granger causality analysis of China’s finance-growth nexus. Empirical
                     Economics, 2016,51(3):897920.
                 [3]    Chang TY, Deale D, Gupta R,  et  al. The causal  relationship  between coal consumption and economic  growth  in the  BRICS
                     countries:  Evidence from Panel-Granger  causality tests. Energy Sources,  Part  B:  Economics, Planning,  and Policy, 2017,12(2):
                     138146.
                 [4]    Kristofer M, Ghazi S, Pär S. A new ridge regression causality test in the presence of multicollinearity. Communications in Statistics:
                     Theory and Methods, 2014,43(2):235248.
                 [5]    David C, David SL, Zhuan P, et al. Inference on causal effects in a generalized regression kink design. Econometrica, 2015,83(6):
                     24532483.
                 [6]    Ryutah K, Yuya S. On using linear quantile regressions for causal inference. Econometric Theory, 2017,33(3):664690.
                 [7]    Luo W, Zhu YY, Ghosh D. On estimating regression-based causal effects using sufficient dimension reduction. Biometrika, 2017,
                     104(1):5165.
                 [8]    Rubin D. Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 1978,6(1):3458.
                 [9]    Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann Publishers,
                     1988. 383408.
                [10]    Heckman JJ. The scientific model of causality. Sociological Methodology, 2005,35(1):197.
                [11]    John A, Rafael L. Counterfactuals and causal  inference: Methods and  principles  for social  research  by  Stephen L. Morgan  &
                     Christopher winship. Structural Equation Modeling, 2011,18(1):152159.
                [12]    Kullback  C,  Weiss  S. Representation  of expert  knowledge for consultation: The CASNET and EXPERT  projects. Artificial
                     Intelligence in Medicine, 1982,1(4):2155.
                [13]    Cheng J, Greiner R, Kelly J. Learning Bayesian networks from data: An efficient approach based on information-theory. Artificial
                     Intelligence, 2002,137(1-2):4390.
                [14]    Liu XQ, Liu XS. Swamping and masking in Markov boundary discovery. Machine Learning, 2016,104(1):2554.
                [15]    Parviainen P, Kaski S. Learning structures of Bayesian networks for variable groups. Int’l Journal of Approximate Reasoning, 2017,
                     88(5):110127.
                [16]    Xiao C, Jin Y, Liu J, et al.  Optimal expert knowledge elicitation for  Bayesian network structure identification. IEEE  Trans. on
                     Automation Science & Engineering, 2018,PP(99):115.
                [17]    Heckerman  D, Geiger  D,  Chickering DM. Learning  Bayesian networks:  The  combination of knowledge  and statistical data.
                     Machine Learning, 1997,20(3):197243.
                [18]    Suzuki J. A theoretical analysis of the BDEU scores in Bayesian network structure learning. Behaviormetrika, 2016,1(1):120.
                [19]    Gheisari  S,  Meybodi MR, Dehghan M,  et  al.  Bayesian network structure training based on  a game  of learning  automata. Int’l
                     Journal of Machine Learning and Cybernetics, 2017,8(4):10931105.
                [20]    Liu X, Liu X. Structure learning of Bayesian networks by continuous particle swarm optimization algorithms. Journal of Statistical
                     Computation & Simulation, 2018,88(9):129.
                [21]    Friedman N, Murphy KP, Russell S. Learning the structure of dynamic probabilistic networks. In: Proc. of the 14th Int’l Conf. on
                     Uncertainty in Artificial Intelligence. Madison, 1998. 139147.
                [22]    Wang SC, Leng CP, Li XL. Learning Bayesian  network  structure  from  small  data  set. Acta Automatica  Sinica,  2009,35(8):
                     10631070 (in Chinese with English abstract).
   106   107   108   109   110   111   112   113   114   115   116