Page 338 - 《软件学报》2021年第9期
P. 338
2962 Journal of Software 软件学报 Vol.32, No.9, September 2021
[23] Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. SGROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, s1-2:S2352711015000059.
[24] Phillips JC, Sun YH, Jain N, Bohm EJ, Kalé LV. Mapping to irregular torus topologies and other techniques for petascale
biomolecular simulation. In: Proc. of the Int’l Conf. for High Performance Computing, Networking, Storage & Analysis. 2014.
[25] Ao YL, Yang C, Wang XL, Xue W, Fu HH, Liu FF, Gan L, Xu P, Ma WJ. 26 PFLOPS stencil computations for atmospheric
modeling on Sunway TaihuLight. In: Proc. of the Parallel and Distributed Processing Symp. IEEE, 2017. 535−544.
[26] Wang YC, Lin XH, Cai LJ, William T, Stephane E, Wang B, Simon S, Matsuoka S. Porting and optimizing GTC-P on TaihuLight
Supercomputer with OpenACC. Journal of Computer Research and Development, 2018,55(4):875−884 (in Chinese with English
abstract).
[27] Yang C, Xue W, Fu HH, You HT, Wang XL, Ao YL, Liu FF, Gan L, Xu P, Wang LN, Yang GW, Zheng WM. 10M-core scalable
fully-implicit solver for nonhydrostatic atmospheric dynamics. In: Proc. of the Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2016. 6.
[28] Fu HH, He CH, Chen BW, Yin ZK, Zhang ZG, Zhang WQ, Zhang TJ, Xue W, Liu WG, Yin WW, Yang GW, Chen XF. 18.9-pflops
nonlinear earthquake simulation on Sunway TaihuLight: Enabling depiction of 18-Hz and 8-meter scenarios. In: Proc. of the Int’l
Conf. for High Performance Computing, Networking, Storage and Analysis. 2017. 1−12.
[29] Dong WQ, Li KL, Kang LT, Quan Z, Li KQ. Implementing molecular dynamics simulation on Sunway TaihuLight system. In: Proc.
of the IEEE Int’l Conf. on High-performance Computing and Communications, IEEE Int’l Conf. on Smart City, and IEEE Int’l
Conf. on Data Science and Systems. IEEE Computer Society, 2016. 443−450.
[30] Yu Y, An H, Chen JS, Liang WH, Xu QQ, Chen Y. Pipelining computation and optimization strategies for scaling GROMACS on
the Sunway many-core processor. In: Proc. of the Int’l Conf. on Algorithms and Architectures for Parallel Processing. Cham:
Springer-Verlag, 2017. 18−32.
附中文参考文献:
[3] 赖莉珊,吴永全,沈通,张宁,高帅.纳米 AI 2O 3 颗粒对纯 Fe 液诱导凝固过程的分子动力学模拟.物理化学学报,2012,28(6):
1347−1354(8).
[5] 姚文军.神威•太湖之光上分子动力学软件的实现与优化[博士学位论文].合肥:中国科学技术大学,2017.
[6] 余洋.面向申威众核架构的 GROMACS 并行实现与性能优化[博士学位论文].合肥:中国科学技术大学,2018.
[8] 倪鸿,刘鑫.基于神威•太湖之光的非结构网格众核优化技术.计算机工程,2019(6):45−51.
[10] 黄锟.分子动力学模拟中的众核并行计算技术[博士学位论文].北京:北京大学,2016.
[12] 邹雪晴.分子动力学模拟研究生物分子特性及相互作用[博士学位论文].北京:北京大学,2009.
[15] 国家超级计算无锡中心.神威太湖之光系统快速使用指南. http://nsccwx.cn/ceshi.php?id=13
[16] 张磊.轮回并行算法基本模型的实现与优化[博士学位论文].北京:北京大学,2017.
[26] 王一超,林新华,蔡林金,William T,Stephane E,王蓓,施忠伟,松岗聪.太湖之光上利用 OpenACC 移植和优化 GTC-P.计算机研究
与发展,2018,55(4):875−884.
田卓(1984-),女,博士,CCF 专业会员,主 陈一峯(1973-),男,博士,副教授,博士生
要研究领域为高性能计算,并行计算. 导师,主要研究领域为并行编程语言,异构
并行软件.