Page 337 - 《软件学报》2021年第9期
P. 337

田卓  等:神威太湖之光上分子动力学模拟的性能优化                                                        2961


          [3]    Lai LS, Wu YQ, Shen T, Zhang N, Gao S. Molecular dynamics simulation of induced solidification process of pure liquid Fe by
             AI 2O 3 nanoparticles. Acta Physico-Chimica Sinica, 2012,28(6):1347−1354(8) (in Chinese with English abstract).
          [4]    Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 1999,314,(1):
             141−151.
          [5]    Yao WJ. Implementation and optimization of molecular dynamics application on Sunway TaihuLight supercomputer [Ph.D. Thesis].
             Hefei: University of Science and Technology of China, 2017 (in Chinese with English abstract).
          [6]    Yu Y. Parallel implementation and performance optimization for refactoring GROMACS on the Sunway many-core architecture
             [Ph.D. Thesis]. Hefei: University of Science and Technology of China, 2018 (in Chinese with English abstract).
          [7]    Fu HH, Liao JF, Yang JZ, Wang LN, Song ZY, Huang XM, Yang C, Xue W, Liu FF, Qiao FL, Zhao W, Yin XQ, Hou CF, Zhang
             CL, Ge W, Zhang J, Wang YG, Zhou CB, Yang GW. The Sunway TaihuLight supercomputer: System and applications. Science
             China Information Sciences, 2016,59(7):109−124.
          [8]    Ni H, Liu X. Multi-core optimization technology of unstructured grid based on Sunway TaihuLight. Computer Engineering, 2019,
             45(6):45−51 (in Chinese with English abstract).
          [9]    Ao YL, Yang C, Liu FF, Yin WW, Jiang LJ, Sun Q. Performance optimization of the HPCG benchmark on the Sunway TaihuLight
             supercomputer. ACM Trans. on Architecture and Code Optimization, 2018,15(1):1−20.
         [10]    Huang K. Many-core computing for molecular dynamic simulation [Ph.D. Thesis]. Beijing: Peking University, 2016 (in Chinese
             with English abstract).
         [11]    Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics
             and molecular dynamics simulations. Journal of the American Chemical Society, 1992,114(25):10024−10035.
         [12]    Zou XQ. Molecular dynamics simulation on physical properties of biomolecules [Ph.D. Thesis]. Beijing: Peking University, 2009
             (in Chinese with English abstract).
         [13]    Kang  JW, Hwang  HJ.  Gigahertz actuator  of multiwall carbon  nanotube encapsulating metallic  ions: Molecular  dynamics
             simulations. Journal of Applied Physics, 2004,96(7):3900.
         [14]    Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 1988,37(14):6991−7000, 1988.
         [15]    National Supercomputing Center in Wuxi. Sunway User Guide (in Chinese). http://nsccwx.cn/ceshi.php?id=13
         [16]    Zhang L. Implementation and optimization of Samsara parallel algorithm’s basic model [Ph.D. Thesis]. Beijing: Peking University,
             2017 (in Chinese with English absrtract).
         [17]    Rapaport DC. The Art of Molecular Dynamics Simulation. 2nd ed., Cambridge: Cambridge University Press, 2004.
         [18]    van  Meel JA, Arnold A,  Frenkel D, Zwart  SFP, Belleman RG. Harvesting  graphics  power  for  MD  simulations. Molecular
             Simulation, 2008,34(3):259−266.
         [19]    Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing
             units. Journal of Computational Physics, 2008,227(10):5342−5359.
         [20]    Liu L, Tamer ÖM. Single instruction multiple data (SIMD) parallelism. In: Proc. of the Encyclopedia of Database Systems. Boston:
             Springer-Verlag, 2009.
         [21]    Shaw  DE, Grossman  JP, Bank  JA, Batson B, Adam Butts J, Chao  JC, Deneroff MM, Dror RO,  Even A,  Fenton CH,  Forte A,
             Gagliardo J, Gill G, Greskamp B, Ho RC, Ierardi DJ, Iserovich L, Kuskin J, Larson RH, Layman T, Lee LS, Lerer AK, Li C,
             Killebrew D,  Mackenzie KM, Mok SYH, Moraes  MA,  Mueller R, Nociolo LJ,  Peticolas JL,  Quan T,  Ramot D,  Salmon  JK,
             Scarpazza DP, Ben Schafer U, Siddique N, Snyder CW, Spengler J, Tang PTP, Theobald M, Toma H, Towles B, Vitale B, Wang
             SC,  Young  C.  Anton 2:  Raising the bar for performance  and programmability in  a special-purpose  molecular dynamics
             supercomputer. In: Proc. of the Int’l Conf. for High Performance Computing, Networking, Storage and Analysis (SC 2014). 2014.
             41−53.
         [22]    Shaw DE, Deneroff MM, Dror RO, Kuskin J, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP,
             Gagliardo J, Grossman JP, Ho RC, Ierardi D, Kolossváry I, Klepeis JL, Layman T, McLeavey C, Moraes MA, Mueller R, Priest EC,
             Shan  YB, Spengler J,  Theobald M,  Towles  B, Wang  SC.  A special purpose  machine for  molecular dynamics simulation. ACM
             SIGARCH Computer Architecture News, 2008,51(2):91−97.
   332   333   334   335   336   337   338   339   340   341   342