Page 319 - 《软件学报》2021年第9期
P. 319

俞惠芳  等:抗量子计算的多变量盲签名方案                                                            2943


         6    结束语

             目前,大多数盲签名方案都是基于传统公钥密码体制的.随着量子计算技术的发展,使得传统公钥密码体制
         下的盲签名受到了严重威胁.本文提出了一种基于多变量的抗量子计算盲签名方案.所提方案运用改进的多变
         量签名模型,采用一个非满射中心映射,将签名的公私钥分离,减少了公私钥之间的线性关系,提高了盲签名的
         安全性.和文献[18,19]中的方案相比,计算效率较高.通过安全性分析知,方案具有盲性、不可伪造性和不可追踪
         性.本文方案可应用在电子现金交易系统、匿名电子投票系统等领域.

         References:
          [1]    Chaum D. Blind signatures for untraceable payments. In: Chaum D, ed. Proc. of the Advances in Cryptology. Boston: Springer-
             Verlag, 1983. 199−203. [doi: 10.1007/978-1-4757-0602-4_18]
          [2]    Kumar M, Katti CP, Saxena PC. An untraceable identity-based blind signature scheme without pairing for e-cash payment system.
             In: Kumar N, ed. Proc. of the Ubiquitous Communications and Network Computing. Cham: Springer-Verlag, 2017. 67−78. [doi:
             10.1007/978-3-319-73423-1_7]
          [3]    Shao AX, Zhang JZ, Xie SC. An e-payment protocol based on quantum multi-proxy blind signature. Int’l Journal of Theoretical
             Physics, 2017,56(4):1241−1248. [doi: 10.1007/s10773-016-3266-6]
          [4]    Guo X, Zhang JZ, Xie SC. A trusted third-party e-payment protocol based on quantum blind signature without entanglement. Int’l
             Journal of Theoretical Physics, 2018,57(9):2657−2664. [doi: 10.1007/s10773-018-3787-2]
          [5]    Bellare M, Namprempre C, Pointcheval D, Semanko M. The one-more-RSA-inversion problems and the security of Chaum’s blind
             signature scheme. Journal of Cryptology, 2003,16(3):185−215. [doi: 10.1007/s00145-002-0120-1]
          [6]    Sun HM, Hsieh BT, Tseng SM. On the security of some proxy blind signature schemes. Journal of Systems and Software, 2005,
             74(3):297−302. [doi: 10.1016/j.jss.2004.02.015]
          [7]    Fan CI, Chen WK, Yeh YS. Randomization enhanced Chaum’s blind signature scheme. Computer Communications, 2000,23(17):
             1677−1680. [doi: 10.1016/s0140-3664(00)00254-1]
          [8]    Nayak SK, Mohanty S, Majhi B. CLB-ECC: Certificateless blind signature using ECC. Journal of Information Processing Systems,
             2017,13(4):970−986. [doi: 10.3745/JIPS.03.0029]
          [9]    Tian  JH,  Zhang JZ,  Li  YP.  A quantum  multi-proxy blind signature scheme based on genuine four-qubit  entangled state. Int’l
             Journal of Theoretical Physics, 2016,55(2):809−816. [doi: 10.1007/s10773-015-2719-7]
         [10]    Islam SKH, Amin R, Biswas GP, Obaidat MS. Provably secure pairing-free identity-based partially blind signature scheme and its
             application in online e-cash system. Arabian Journal for Science and Engineering, 2016,41(8):3163−3176. [doi: 10.1007/s13369-
             016-2115-5]
         [11]    Shor PW. Algorithms for quantum computation: Discrete logarithms and factoring. In: Shor PW, ed. Proc. of the 35th Annual Symp.
             on Foundations of Computer Science. Santa Fe: IEEE, 1994. 124−134. [doi: 10.1109/SFCS.1994.365700]
         [12]    Wang SP, Ma R, Zhang YL, Wang XF. Ring signature scheme based on multivariate public key cryptosystems. Computers and
             Mathematics with Applications, 2011,62(10):3973−3979. [doi: 10.1016/j.camwa.2011.09.052]
         [13]    Liu XQ, Zhao YM. Variant scheme of ring signature based on multivariate public key cryptosystems. Computer Engineering, 2015,
             41(2):96−99 (in Chinese with English abstract). [doi: 10.3969/j.issn.1000-3428]
         [14]    Guo  QL,  Xiang  H,  Cai  B, Sang J,  Xiang T.  Threshold ring signature scheme based on  multivariate public key  cryptosystems.
             Journal of Cryptologic Research, 2018,5(2):140−150 (in Chinese with English abstract). [doi: 10.13868/j.cnki.jcr.000226]
         [15]    Tang SH,  Xu  LL.  Proxy signature scheme  based on isomorphisms of polynomials. In:  Bertino  E,  ed. Proc. of  the  Network  and
             System Security. Heidelberg: Springer, 2012. 113−125. [doi: 10.1007/978-3-642-34601-9_9]
         [16]    Sun CY, Li YF, Zhang  WZ,  Si XM. A  new  proxy signature  scheme  based  on multivariate cryptosystem.  Journal  of  Sichuan
             University (Natural Science Edition), 2012,49(3):565−569 (in Chinese with English abstract). [doi: 10.3969/j.issn.0490-6756.2012.
             03.016]
         [17]    Yang GD, Tang SH, Yang L. A novel group signature scheme based on MPKC. In: Bao F, ed. Proc. of the Information Security
             Practice and Experience. Heidelberg: Springer-Verlag, 2011. 181−195. [doi: 10.1007/978-3-642-21031-0_14]
   314   315   316   317   318   319   320   321   322   323   324