Page 309 - 《软件学报》2021年第9期
P. 309

吴森焱  等:融合多种特征的恶意 URL 检测方法                                                        2933


         References:
          [1]    Symantec Internet Security  Threat Report. 2019. https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-
             en.pdf
          [2]    Eshete B, Villafiorita A, Weldemariam K. Malicious website detection: Effectiveness and efficiency issues. In: Proc. of the 1st
             Syssec Workshop. IEEE Computer Society, 2011. 123−126. [doi: 10.1109/SysSec.2011.9]
          [3]    Google. Google safe browsing API. 2019. https://developers.google.com/safe-browsing/v4/
          [4]    Cova M, Kruegel C, Vigna G. Detection and analysis of drive-by-download attacks and malicious JavaScript code. In: Proc. of the
             Int’l Conf. on World Wide Web. ACM, 2010. 281−290. [doi: 10.1145/1772690.1772720]
          [5]    Hou YT, Chang Y, Chen T, et al. Malicious Web content detection by machine learning. Expert Systems with Applications, 2010,
             37(1):55−60. [doi: 10.1016/j.eswa.2009.05.023 ]
          [6]    Likarish P, Jung E, Jo I. Obfuscated malicious JavaScript detection using classification techniques. In: Proc. of the 4th Int’l Conf.
             on Malicious and Unwanted Software. IEEE Computer Society, 2009. 47−54. [doi: 10.1109/MALWARE.2009.5403020]
          [7]    Altay B, Dokeroglu T, Cosar A. Context-sensitive and  keyword  density-based  supervised machine learning  techniques  for
             malicious webpage detection. Soft Computing, 2018,23(4):1−15. [doi: 10.1007/s00500-018-3066-4]
          [8]    Eshete B, Venkatakrishnan N. WebWinnow: Leveraging exploit kit workflows to detect malicious URLs. In: Proc. of the ACM
             Conf. on Data and Application Security and Privacy. ACM, 2014. 305−312. [doi: 10.1145/2557547.2557575]
          [9]    Hsiao HW, Chen DN, Wu TJ. Detecting hiding malicious website using network traffic mining approach. In: Proc. of the Int’l Conf.
             on Education Technology & Computer, Vol. 5. IEEE, 2010. 276−280. [doi: 10.1109/ICETC.2010.5530064]
         [10]    Mekky H, Torres R, Zhang ZL, et al. Detecting malicious HTTP redirections using trees of user browsing activity. In: Proc. of the
             IEEE INFOCOM  2014—IEEE  Conf. on  Computer  Communications. IEEE, 2014. 1159−1167. [doi: 10.1109/INFOCOM.2014.
             6848047]
         [11]    Stringhini G, Kruegel C, Vigna G. Shady paths: Leveraging surfing crowds to detect malicious Web pages. In: Proc. of the ACM
             Sigsac Conf. on Computer & Communications Security. ACM, 2013. 133−144. [doi: 10.1145 / 2508859.2516682]
         [12]    Matsunaka T, Kubota A, Kasama T. An approach to detect drive-by download by observing the Web page transition behaviors. In:
             Proc. of the Information Security. IEEE, 2015. 19−25. [doi: 10.1109/AsiaJCIS.2014.21]
         [13]    Shibahara T, Yamanishi K, Takata Y, et al. Malicious URL sequence detection using event denoising convolutional neural network.
             In: Proc. of the IEEE Int’l Conf. on Communications (ICC). IEEE, 2017. 1−7. [doi: 10.1109/ICC.2017.7996831]
         [14]    Liu H, Zhang D, Wei G, et al. Detecting malicious rootkit Web pages in high-interaction client honeypots. In: Proc. of the IEEE
             Int’l Conf. on Information Theory and Information Security. IEEE, 2011. 544−547. [doi: 10.1109/ICITIS.2010.5689538]
         [15]    Zhang WF, Liu RC, Xu L. Web page trojan detection method based on dynamic behavior analysis. Ruan Jian Xue Bao/Journal of
             Software, 2018,29(5):1410−1421  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/5495.htm [doi:  10.13328/
             j.cnki.jos.005495]
         [16]    Li B, Vadrevu P, Lee KH,  et  al.  JSgraph: Enabling reconstruction  of Web attacks  via efficient tracking  of  live in-browser
             JavaScript executions. In: Proc. of the NDSS. 2018. [doi: 10.14722/ndss.2018.23319]
         [17]    Wang R, Zhu Y, Tan  J,  et  al.  Detection of  malicious Web pages based on hybrid  analysis. Journal of Information Security  &
             Applications, 2017,35:68−74. [doi: 10.1016/j.jisa.2017.05.008]
         [18]    Harnmetta S, Ngamsuriyaroj S. Classification of exploit-kit behaviors via machine learning approach. In: Proc. of the 20th Int’l
             Conf. on Advanced Communication Technology (ICACT). IEEE, 2018. 468−473. [doi: 10.23919/ICACT.2018. 8323798]
         [19]    Angelo. Thug: Python low-interaction honeyclient. 2018. https://github.com/buffer/thug
         [20]    Han JW, Jian P, Kamber M. Data Mining: Concepts and Techniques. Elsevier, 2011.
         [21]    Honeynet. Capture-HPC. 2013. https://github.com/honeynet/capture-hpc
         [22]    Honeynet. PhoneyC. 2015. https://github.com/buffer/phoneyc
             AV-Test Lab. The AV-TEST Security Report. 2017. https://www.avtest.org/fileadmin/pdf/publications/security_report/AV-TEST_
             Sicherheitsreport_2016-2017.pdf

         附中文参考文献:
         [15]  张卫丰,刘蕊成,许蕾.基于动态行为分析的网页木马检测方法.软件学报,2018,29(5):1410−1421. http://www.jos.org.cn/1000-
             9825/5495.htm [doi: 10.13328/j.cnki.jos.005495]
   304   305   306   307   308   309   310   311   312   313   314