Page 175 - 《软件学报》2021年第9期
P. 175

李卫疆  等:基于多通道特征和自注意力的情感分类方法                                                       2799


         [13]    Huang FL, Feng S, Wang D, Yu G. Mining topic sentiment in microblogging based on multi-feature fusion. Chinese Journal of
             Computers, 2017,40(4):872−888 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2017.00872]
         [14]    Huang FL, Yu G, Zhang JL, Li CX, Yuan CA, Lu JL. Mining topic sentiment in micro-blogging based on micro-blogger social
             relation. Ruan Jian Xue Bao/Journal of Software, 2017,28(3):694−707 (in Chinese with English abstract). http://www.jos.org.cn/
             1000-9825/5157.htm [doi: 10.13328/j.cnki.jos.005157]
         [15]    Vo DT, Zhang Y. Don’t count, predict! An automatic approach to learning sentiment lexicons for short text. In: Proc. of the 54th
             Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016.
             219−224. [doi: 10.18653/v1/P16-2036]
         [16]    Chen Y, Skiena S. Building sentiment lexicons for all major languages. In: Proc. of the 52nd Annual Meeting of the Association for
             Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2014. 383−389. [doi: 10.3115/v1/P14-2063]
         [17]    Teng Z, Vo DT, Zhang Y. Context-sensitive lexicon features for neural sentiment analysis. In: Proc. of the 2016 Conf. on Empirical
             Methods in  Natural  Language Processing. Stroudsburg:  Association for  Computational  Linguistics, 2016. 1629−1638. [doi: 10.
             18653/v1/D16-1169]
         [18]    Tai  KS, Socher  R,  Manning  CD. Improved semantic  representations from  tree-structured long short-term  memory networks. In:
             Proc.  of  the 53rd Annual Meeting  of  the Association for Computational Linguistics and the  7th Int’l  Joint Conf.  on Natural
             Language Processing. Stroudsburg: Association for Computational Linguistics, 2015. 1556−1566. [doi: 10.3115/v1/P15-1150]
         [19]    Zhang  B, Xu X, Li X, Chen  X,  Ye Y, Wang Z.  Sentiment analysis  through critic  learning  for  optimizing convolutional  neural
             networks with rules. Neurocomputing, 2019,356:21−30. [doi: 10.1016/j.neucom.2019.04.038 ]
         [20]    Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.
             0473, 2014.
         [21]    Ma D, Li S, Zhang X, Wang H. Interactive attention networks for aspect-level sentiment classification. In: Proc. of the 26th Int’l
             Joint Conf. on Artificial Intelligence. AAAI, 2017. 4068−4074.
         [22]    Wang Y, Huang ML, Zhao L, Zhu XY. Attention-based LSTM for aspect-level sentiment classification. In: Proc. of the 2016 Conf.
             on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016. 606−615.
             [doi: 10.18653/v1/D16-1058]
         [23]    Liu Q, Zhang H, Zeng Y, Huang Z, Wu Z. Content attention model for aspect based sentiment analysis. In: Proc. of the 2018 Int’l
             Conf. on World Wide Web. Steering Committee, 2018. 1023−1032. [doi: 10.1145/3178876.3186001]
         [24]    Liang B, Liu Q, Xu J, Zhou  Q, Zhang  P. Aspect-based  sentiment analysis  based  on multi-attention CNN.  Journal  of Computer
             Research and Development,  2017,54(8):1724−1735 (in Chinese with English abstract).  [doi:  10.7544/issn1000-1239.2017.
             20170178]
         [25]    Guan PF, Li B, Lv XQ, Zhou JS. Attention enhanced bi-directional LSTM for sentiment analysis. Journal of Chinese Information
             Processing, 2019,33(2):105−111 (in  Chinese  with English  abstract). http://jcip.cipsc.org.cn/CN/Y2019/V33/I2/105 [doi:  CNKI:
             SUN:MESS.0.2019-02-017]
         [26]    Zhou X, Wan X, Xiao J. Attention-based LSTM network for cross-lingual sentiment classification. In: Proc. of the 2016 Conf. on
             Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016. 247−256. [doi:
             10.18653/v1/D16-1024]
         [27]    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser A, Polosukhin I. Attention is all you need. In: Proc. of
             the Advances in Neural Information Processing Systems. 2017. 5998−6008.
         [28]    Lin Z, Feng M, Santos CND, Yu M, Xiang B, Zhou B, Bengio Y. A structured self-attentive sentence embedding. arXiv preprint
             arXiv:1703.03130, 2017.
         [29]    Wang Y, Sun A, Han J, Liu Y, Zhu X. Sentiment analysis by capsules. In: Proc. of the 2018 Int’l Conf. on World Wide Web.
             Steering Committee, 2018. 1165−1174. [doi: 10.1145/3178876.3186015]
         [30]    Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans. on Signal Processing, 1997,45(11):2673−2681.
         [31]    Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
         [32]    Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proc. of the Int’l Conf. on Machine Learning. JMLR:
             Workshop&CP, 2014. 1188−1196.
   170   171   172   173   174   175   176   177   178   179   180