Page 157 - 《软件学报》2021年第9期
P. 157

陈佳楠  等:基于多核 CPU 的表约束并行传播模式研究                                                     2781


          [2]    Kasif S. On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artificial Intelligence, 1990,45(3):
             275−286.
          [3]    Rolf  CC, Kuchcinski  K. Parallel  consistency in  constraint programming. In: Proc. of the 2009 Int’l  Conf. on Parallel  and
             Distributed Processing Techniques and Applications (PDPTA 2009). 2009. 638−644.
          [4]    Li Z, Li ZS, Li Y. A constraint network model and parallel arc consistency algorithms based on GPU. Ji Suan Ji Yan Jiu Yu Fa
             Zhan/Journal of Computer Research and Development, 2017,54(3):514−528 (in Chinese with English abstract).
          [5]    Ullmann JR. Partition search for non-binary constraint satisfaction. Information Sciences, 2007,177(18):3639−3678.
          [6]    Lecoutre C. STR2: Optimized simple tabular reduction for table constraints. Constraints, 2011,16(4):341−371.
          [7]    Lecoutre C, Likitvivatanavong C, Yap RHC. STR3: A path-optimal filtering algorithm for table constraints. Artificial Intelligence,
             2015,220:1−27.
          [8]    Wang R, Xia W, Yap RHC, et al. Optimizing simple tabular reduction with a bitwise representation. In: Proc. of the Int’l Joint
             Conf. on Artificial Intelligence. AAAI, 2016. 787−795.
          [9]    Demeulenaere J, Hartert R, Lecoutre C, et al. Compact-table: Efficiently filtering table constraints with reversible sparse bit-sets. In:
             Proc. of the Int’l Conf. on Principles and Practice of Constraint Programming. Cham: Springer-Verlag, 2016. 207−223.
         [10]    Li HB, Liang YC, Li ZS. Simple tabular reduction for generalized arc consistency on negative table constraints. Ruan Jian Xue
             Bao/Journal of Software, 2016,27(11):2701−2711  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/4874.htm
             [doi: 10.13328/j.cnki.jos.004874]
         [11]    Yang MQ, Li ZS, Li Z. Optimizing MDDc and STR3 for solving constraint satisfaction problem. Ruan Jian Xue Bao/Journal of
             Software, 2017,28(12):3156−3166 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5242.htm [doi: 10.13328/
             j.cnki.jos.005242]
         [12]    Yang  MQ,  Li  ZS, Zhang JC.  Time-stamp based simple  tabular reduction algorithm.  Ruan Jian  Xue  Bao/Journal of Software,
             2019,30(11):3355−3363  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/5559.htm  [doi:  10.13328/j.cnki.jos.
             005559]
         [13]    Schulte C, Carlsson  M.  Finite Domain Constraint  Programming  Systems. Handbook  of Constraint  Programming, Chapter  14.
             Elsevier, 2006. 493−524.
         [14]    Sabin D, Freuder EC. Contradicting conventional wisdom in constraint satisfaction. In: Proc. of the Int’l Workshop on Principles
             and Practice of Constraint Programming. Berlin, Heidelberg: Springer-Verlag, 1994. 10−20.
         [15]    Mcgregor  JJ. Relational consistency algorithms and their application  in  finding  subgraph and  graph  isomorphisms.  Information
             Sciences, 1979,19(3):229−250.
         [16]    Li Z, Yang M, Li Z. A new variable-oriented propagation scheme for constraint satisfaction problem. In: Proc. of the Int’l Conf. on
             Knowledge Science, Engineering and Management. Cham: Springer-Verlag, 2018. 59−68.
         [17]    Lecoutre C. Generic GAC Algorithms. Constraint Networks: Techniques and Algorithms, Chapter 4. John Wiley & Sons, 2010.
             185−237.
         [18]    Bessière C, Régin JC, Yap RHC, et al. An optimal coarse-grained arc consistency algorithm. Artificial Intelligence, 2005,165(2):
             165−185.
         [19]    Lecoutre C, Hemery F. A study of residual supports in arc consistency. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence,
             Vol.7. AAAI, 2007. 125−130.
         [20]    Perez G, Régin JC. Improving GAC-4 for table and MDD constraints. In: Proc. of the Int’l Conf. on Principles and Practice of
             Constraint Programming. Cham: Springer-Verlag, 2014. 606−621.
         [21]    Cheng KCK, Yap RHC. An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some
             global constraints. Constraints, 2010,15(2):265−304.
         [22]    Paparrizou A, Stergiou K. An efficient higher-order consistency algorithm for table constraints. In: Proc. of the 26th AAAI Conf.
             on Artificial Intelligence. 2012.
         [23]    Lecoutre C, Paparrizou A, Stergiou K. Extending STR to a higher-order consistency. In: Proc. of the 27th AAAI Conf. on Artificial
             Intelligence. 2013.
   152   153   154   155   156   157   158   159   160   161   162