Page 157 - 《软件学报》2021年第9期
P. 157
陈佳楠 等:基于多核 CPU 的表约束并行传播模式研究 2781
[2] Kasif S. On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artificial Intelligence, 1990,45(3):
275−286.
[3] Rolf CC, Kuchcinski K. Parallel consistency in constraint programming. In: Proc. of the 2009 Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2009). 2009. 638−644.
[4] Li Z, Li ZS, Li Y. A constraint network model and parallel arc consistency algorithms based on GPU. Ji Suan Ji Yan Jiu Yu Fa
Zhan/Journal of Computer Research and Development, 2017,54(3):514−528 (in Chinese with English abstract).
[5] Ullmann JR. Partition search for non-binary constraint satisfaction. Information Sciences, 2007,177(18):3639−3678.
[6] Lecoutre C. STR2: Optimized simple tabular reduction for table constraints. Constraints, 2011,16(4):341−371.
[7] Lecoutre C, Likitvivatanavong C, Yap RHC. STR3: A path-optimal filtering algorithm for table constraints. Artificial Intelligence,
2015,220:1−27.
[8] Wang R, Xia W, Yap RHC, et al. Optimizing simple tabular reduction with a bitwise representation. In: Proc. of the Int’l Joint
Conf. on Artificial Intelligence. AAAI, 2016. 787−795.
[9] Demeulenaere J, Hartert R, Lecoutre C, et al. Compact-table: Efficiently filtering table constraints with reversible sparse bit-sets. In:
Proc. of the Int’l Conf. on Principles and Practice of Constraint Programming. Cham: Springer-Verlag, 2016. 207−223.
[10] Li HB, Liang YC, Li ZS. Simple tabular reduction for generalized arc consistency on negative table constraints. Ruan Jian Xue
Bao/Journal of Software, 2016,27(11):2701−2711 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4874.htm
[doi: 10.13328/j.cnki.jos.004874]
[11] Yang MQ, Li ZS, Li Z. Optimizing MDDc and STR3 for solving constraint satisfaction problem. Ruan Jian Xue Bao/Journal of
Software, 2017,28(12):3156−3166 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5242.htm [doi: 10.13328/
j.cnki.jos.005242]
[12] Yang MQ, Li ZS, Zhang JC. Time-stamp based simple tabular reduction algorithm. Ruan Jian Xue Bao/Journal of Software,
2019,30(11):3355−3363 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5559.htm [doi: 10.13328/j.cnki.jos.
005559]
[13] Schulte C, Carlsson M. Finite Domain Constraint Programming Systems. Handbook of Constraint Programming, Chapter 14.
Elsevier, 2006. 493−524.
[14] Sabin D, Freuder EC. Contradicting conventional wisdom in constraint satisfaction. In: Proc. of the Int’l Workshop on Principles
and Practice of Constraint Programming. Berlin, Heidelberg: Springer-Verlag, 1994. 10−20.
[15] Mcgregor JJ. Relational consistency algorithms and their application in finding subgraph and graph isomorphisms. Information
Sciences, 1979,19(3):229−250.
[16] Li Z, Yang M, Li Z. A new variable-oriented propagation scheme for constraint satisfaction problem. In: Proc. of the Int’l Conf. on
Knowledge Science, Engineering and Management. Cham: Springer-Verlag, 2018. 59−68.
[17] Lecoutre C. Generic GAC Algorithms. Constraint Networks: Techniques and Algorithms, Chapter 4. John Wiley & Sons, 2010.
185−237.
[18] Bessière C, Régin JC, Yap RHC, et al. An optimal coarse-grained arc consistency algorithm. Artificial Intelligence, 2005,165(2):
165−185.
[19] Lecoutre C, Hemery F. A study of residual supports in arc consistency. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence,
Vol.7. AAAI, 2007. 125−130.
[20] Perez G, Régin JC. Improving GAC-4 for table and MDD constraints. In: Proc. of the Int’l Conf. on Principles and Practice of
Constraint Programming. Cham: Springer-Verlag, 2014. 606−621.
[21] Cheng KCK, Yap RHC. An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some
global constraints. Constraints, 2010,15(2):265−304.
[22] Paparrizou A, Stergiou K. An efficient higher-order consistency algorithm for table constraints. In: Proc. of the 26th AAAI Conf.
on Artificial Intelligence. 2012.
[23] Lecoutre C, Paparrizou A, Stergiou K. Extending STR to a higher-order consistency. In: Proc. of the 27th AAAI Conf. on Artificial
Intelligence. 2013.