Page 36 - 《软件学报》2021年第6期
P. 36

1610                                     Journal of Software  软件学报 Vol.32, No.6,  June 2021

         [22]    Liu  Y,  Lapata M.  Text  summarization with pretrained  encoders. In: Proc. of the 2019  Conf. on Empirical  Methods in  Natural
             Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing (EMNLP-IJCNLP). Hong Kong: Association for
             Computational Linguistics, 2019. 3730−3740. [doi: 10.18653/v1/D19-1387]
         [23]    Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proc. of the 3rd Int’l Conf.
             on Learning Representations (ICLR 2015). 2015.
         [24]    See A, Liu PJ, Manning CD. Get to the point: Summarization with pointer-generator networks. In: Proc. of the Annual Meeting of
             the Association for Computational Linguistics (Vol.1: Long Papers). Vancouver: Association for Computational Linguistics, 2017.
             1073−1083. [doi: 10.18653/v1/P17-1099]
         [25]    Gehrmann S, Deng YT, Rush AM. Bottom-Up abstractive summarization. In: Proc. of the 2018 Conf. on Empirical Methods in
             Natural Language Processing. Brussels: Association for Computational Linguistics, 2018. 4098−4109.
         [26]    Liu F, Flanigan J, Thomson S, Sadeh N, Smith NA. Toward abstractive summarization using semantic representations. In: Proc. of
             the 2015 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
             Denver: Association for Computational Linguistics, 2015. 1077−1086.
         [27]    Yu LT, Zhang WN, Yu Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Proc. of the 31st AAAI Conf. on
             Artificial Intelligence (AAAI 2017). San Francisco: AAAI, 2017. 2852−2858.
         [28]    Fumio N, Nakano YI., Takase Y. Predicting meeting extracts in group discussions using multimodal convolutional neural networks.
             In: Proc. of  the 19th ACM Int’l  Conf. on Multimodal Interaction. New  York: Association for  Computing Machinery, 2017.
             421−425. [doi: https://doi.org/10.1145/3136755.3136803]
         [29]    Pan H, Zhou JP, Zhao Z, Liu Y, Cai D, Yang M. Dial2desc: End-to-end dialogue description generation. arXiv preprint arXiv:1811.
             00185, 2018.
         [30]    Liu CY, Wang P, Xu J, Li Z, Ye JP. Automatic dialogue summary generation for customer service. In: Proc. of the 25th ACM
             SIGKDD  Int’l Conf.  on Knowledge  Discovery  & Data Mining.  New York: Association  for Computing Machinery,  2019.
             1957−1965. [doi: https://doi.org/10.1145/3292500.3330683]
         [31]    Tao X, Zhang XX, Guo SL, Zhang LM. Automatic summarization of user-generated content in academic Q&A community based
             on Word2Vec and MMR. Data Analysis and Knowledge Discovery, 2020,4(4):109−118 (in Chinese with English abstract).
         [32]    Kyunghyun C, Merriënboer BV, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations
             using  RNN  encoder-decoder for statistical  machine translation. In: Proc. of the 2014  Conf. on  Empirical  Methods in  Natural
             Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014. 1724−1734.
         [33]    Jiang SY, Armaly A, McMillan C. Automatically generating commit messages from diffs using neural machine translation. In: Proc.
             of the 2017 32nd IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). Urbana: IEEE, 2017. 135−146.
         [34]    Xu SB, Yao Y, Xu F, Gu TX, Tong HH, Lu J. Commit message generation for source code changes. In: Proc. of the 28th Int’l Joint
             Conf. on Artificial Intelligence (IJCAI). 2019. 3975−3981.
         [35]    Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation. In: Proc. of the 2018 IEEE/ACM 26th Int’l Conf. on Program
             Comprehension (ICPC). Gothenburg: IEEE, 2018. 200−210.
         [36]    Hu X, Li G, Xia  X, Lo  D,  Jin Z.  Deep code comment  generation with  hybrid  lexical and  syntactical information. Empirical
             Software Engineering, 2020,25:2179−2217. [doi: https://doi.org/10.1007/s10664-019-09730-9]
         [37]    Alon U, Zilberstein M, Levy  O, Yahav E. code2vec: Learning  distributed  representations  of code.  Proc.  of the  ACM  on
             Programming Languages, 2019,3:1−29. [doi: https://doi.org/10.1145/3290353]
         [38]    Ye  DH, Xing  ZC, Foo  CY,  Ang ZQ,  Li J,  Kapre  N. Software-Specific named  entity recognition in software  engineering social
             content. In: Proc. of the 2016 IEEE 23rd Int’l Conf. on Software Analysis, Evolution, and Reengineering (SANER). Suita: IEEE,
             2016. 90−101. [doi: 10.1109/SANER.2016.10]
         [39]    Markovtsev V, Long W, Bulychev E, Keramitas R, Slavnov K, Markowski G. Splitting source code identifiers using bidirectional
             LSTM recurrent neural network. arXiv preprint arXiv:1805.11651, 2018.
         [40]    Ferrari A., Esuli A. An NLP approach  for cross-domain ambiguity  detection in  requirements engineering. Automated  Software
             Engineering, 2019,26:559−598. [doi: https://doi.org/10.1007/s10515-019-00261-7]
         [41]    Chen H, Damevski K, Shepherd D, Kraft NA. Modeling hierarchical usage context for software exceptions based on interaction
             data. Automated Software Engineering, 2019,26:733−756. [doi: https://doi.org/10.1007/s10515-019-00265-3]
         [42]    Alreshedy  K, Dharmaretnam  D,  German DM, Srinivasan  V,  Gulliver  TA. SCC++: Predicting the programming language of
             questions and snippets of StackOverflow. Journal of Systems and Software, 2020,162:110505. [doi: 10.1016/j.jss.2019.110505]
   31   32   33   34   35   36   37   38   39   40   41