Page 35 - 《软件学报》2021年第6期
P. 35
邝砾 等:大粒度 Pull Request 描述自动生成 1609
References:
[1] https://github.com
[2] Georgios G, Storey MA, Bacchelli A. Work practices and challenges in pull-based development: the contributor’s perspective. In:
Kellenberger P, ed. Proc. of the 38th Int’l Conf. on Software Engineering (ICSE). Austin: IEEE, 2016. 285−296. [doi: 10.1145/
2884781.2884826]
[3] Liu ZX, Xia X, Treude C, Lo D, Li SP. Automatic generation of pull request descriptions. In: Proc. of the 34th IEEE/ACM Int’l
Conf. on Automated Software Engineering (ASE). San Diego: IEEE, 2019. 176−188.[doi: 10.1109/ASE.2019.00026]
[4] Zhong M, Liu PF, Wang DQ, Qiu XP, Huang XJ. Searching for effective neural extractive summarization: What works and what’s
next. In: Proc. of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for
Computational Linguistics, 2019. 1049−1058. [doi: 10.18653/v1/P19-1100]
[5] Zhou Z, Pan HJ, Fan CJ, Liu Y, Li LL, Yang M, Cai D. Abstractive meeting summarization via hierarchical adaptive segmental
network learning. In: Proc. of the World Wide Web Conf. (WWW 2019). New York: Association for Computing Machinery, 2019.
455−3461. [doi: https://doi.org/10.1145/3308558.3313619]
[6] Kedzie C, Kathleen M, Hal D. Content selection in deep learning models of summarization. In: Proc. of the Conf. on Empirical
Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018. 1818−1828. [doi: 10.18653/
v1/D18-1208]
[7] Wang DQ, Liu PF, Zheng YY, Qiu XP, Huang XJ. Heterogeneous graph neural networks for extractive document summarization.
In: Proc. of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,
2020. 6209−6219. [doi: 10.18653/v1/2020.acl-main.553]
[8] Soares DM, de Lima Júnior ML, Murta L, Plastino A. Acceptance factors of pull requests in open-source projects. In: Proc. of the
30th Annual ACM Symp. on Applied Computing. New York: Association for Computing Machinery, 2015. 1541−1546. [doi:
https://doi.org/10.1145/2695664.2695856]
[9] Chen D, Stolee KT, Menzies T. Replication can improve prior results: A Github study of pull request acceptance. In: Proc. of the
27th Int’l Conf. on Program Comprehension (ICPC). Montreal: IEEE 2019. 179−190.
[10] Terrell J, Kofink A, Middleton J, Rainear C, Murphy-Hill E, Parnin C, Stallings J. Gender differences and bias in open source: Pull
request acceptance of women versus men. PeerJ Computer Science, 2017,3:e111. [doi: https://doi.org/10.7717/peerj-cs.111]
[11] Jiang J, Yang Y, He J, Blanc X, Zhang L. Who should comment on this pull request? Analyzing attributes for more accurate
commenter recommendation in pull-based development. Information and Software Technology, 2017,84:48−62.
[12] Maddila C, Bansal C, Nagappan N. Predicting pull request completion time: A case study on large scale cloud services. In: Proc. of
the 27th ACM Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering.
New York: Association for Computing Machinery, 2019. 874−882.
[13] van der Veen E, Gousios G, Zaidman A. Automatically prioritizing pull requests. In: Proc. of the 12th Working Conf. on Mining
Software Repositories. Florence: IEEE, 2015. 357−361. [doi: 10.1109/MSR.2015.40]
[14] Yu S, Xu L, Zhang Y, Wu JS, Liao ZF, Li YB. NBSL: A supervised classification model of pull request in Github. In: Proc. of the
IEEE Int’l Conf. on Communications (ICC). Kansas City: IEEE, 2018. 1−6. [doi: 10.1109/ICC.2018.8422103]
[15] Xia X, Lo D, Wang X, Yang XH. Who should review this change? Putting text and file location analyses together for more accurate
recommendations. In: Proc. of the Int’l Conf. on Software Maintenance and Evolution (ICSME). Bremen: IEEE, 2015. 261−270.
[doi: 10.1109/ICSM.2015.7332472]
[16] Zanjani MB, Kagdi H, Bird C. Automatically recommending peer reviewers in modern code review. IEEE Trans. on Software
Engineering, 2016,42(6):530−543. [doi: 10.1109/TSE.2015.2500238]
[17] Lu S, Yang D, Hu J, Zhang X. Code reviewer recommendation based on time and impact factor for pull request in Github.
Computer Systems Applications, 2016,25(12):155−161 (in Chinese with English abstract).
[18] Liao ZF, Wu ZX, Wu JS, Zhang Y, Liu JY, Long J. TIRR: A code reviewer recommendation algorithm with topic model and
reviewer influence. In: Proc. of the 2019 IEEE Global Communications Conf. (GLOBECOM). Waikoloa: IEEE, 2019. 1−6.
[19] Mihalcea R, Tarau P. Textrank: Bringing order into text. In: Proc. of the 2004 Conf. on Empirical Methods in Natural Language
Processing. Barcelona: Association for Computational Linguistics, 2004. 404−411.
[20] Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab, 1999.
[21] Nallapati R, Zhai FF, Zhou BW. SummaRuNNer: A recurrent neural network based sequence model for extractive summarization
of documents. In: Proc. of the 31st AAAI Conf. on Artificial Intelligence (AAAI 2017). San Francisco: AAAI, 2017. 3075−3081.