Page 35 - 《软件学报》2021年第6期
P. 35

邝砾  等:大粒度 Pull Request 描述自动生成                                                    1609


         References:
          [1]    https://github.com
          [2]    Georgios G, Storey MA, Bacchelli A. Work practices and challenges in pull-based development: the contributor’s perspective. In:
             Kellenberger P, ed. Proc. of the 38th Int’l Conf. on Software Engineering (ICSE). Austin: IEEE, 2016. 285−296. [doi: 10.1145/
             2884781.2884826]
          [3]    Liu ZX, Xia X, Treude C, Lo D, Li SP. Automatic generation of pull request descriptions. In: Proc. of the 34th IEEE/ACM Int’l
             Conf. on Automated Software Engineering (ASE). San Diego: IEEE, 2019. 176−188.[doi: 10.1109/ASE.2019.00026]
          [4]    Zhong M, Liu PF, Wang DQ, Qiu XP, Huang XJ. Searching for effective neural extractive summarization: What works and what’s
             next. In: Proc. of the 57th  Annual Meeting of the  Association for  Computational  Linguistics. Florence:  Association for
             Computational Linguistics, 2019. 1049−1058. [doi: 10.18653/v1/P19-1100]
          [5]    Zhou Z, Pan HJ, Fan CJ, Liu Y, Li LL, Yang M, Cai D. Abstractive meeting summarization via hierarchical adaptive segmental
             network learning. In: Proc. of the World Wide Web Conf. (WWW 2019). New York: Association for Computing Machinery, 2019.
             455−3461. [doi: https://doi.org/10.1145/3308558.3313619]
          [6]    Kedzie C, Kathleen M, Hal D. Content selection in deep learning models of summarization. In: Proc. of the Conf. on Empirical
             Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018. 1818−1828. [doi: 10.18653/
             v1/D18-1208]
          [7]    Wang DQ, Liu PF, Zheng YY, Qiu XP, Huang XJ. Heterogeneous graph neural networks for extractive document summarization.
             In: Proc. of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,
             2020. 6209−6219. [doi: 10.18653/v1/2020.acl-main.553]
          [8]    Soares DM, de Lima Júnior ML, Murta L, Plastino A. Acceptance factors of pull requests in open-source projects. In: Proc. of the
             30th Annual ACM  Symp.  on Applied Computing. New York: Association  for Computing Machinery,  2015.  1541−1546. [doi:
             https://doi.org/10.1145/2695664.2695856]
          [9]    Chen D, Stolee KT, Menzies T. Replication can improve prior results: A Github study of pull request acceptance. In: Proc. of the
             27th Int’l Conf. on Program Comprehension (ICPC). Montreal: IEEE 2019. 179−190.
         [10]    Terrell J, Kofink A, Middleton J, Rainear C, Murphy-Hill E, Parnin C, Stallings J. Gender differences and bias in open source: Pull
             request acceptance of women versus men. PeerJ Computer Science, 2017,3:e111. [doi: https://doi.org/10.7717/peerj-cs.111]
         [11]    Jiang J,  Yang Y,  He J,  Blanc  X, Zhang L. Who should  comment on this pull request?  Analyzing  attributes  for  more  accurate
             commenter recommendation in pull-based development. Information and Software Technology, 2017,84:48−62.
         [12]    Maddila C, Bansal C, Nagappan N. Predicting pull request completion time: A case study on large scale cloud services. In: Proc. of
             the 27th ACM Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering.
             New York: Association for Computing Machinery, 2019. 874−882.
         [13]    van der Veen E, Gousios G, Zaidman A. Automatically prioritizing pull requests. In: Proc. of the 12th Working Conf. on Mining
             Software Repositories. Florence: IEEE, 2015. 357−361. [doi: 10.1109/MSR.2015.40]
         [14]    Yu S, Xu L, Zhang Y, Wu JS, Liao ZF, Li YB. NBSL: A supervised classification model of pull request in Github. In: Proc. of the
             IEEE Int’l Conf. on Communications (ICC). Kansas City: IEEE, 2018. 1−6. [doi: 10.1109/ICC.2018.8422103]
         [15]    Xia X, Lo D, Wang X, Yang XH. Who should review this change? Putting text and file location analyses together for more accurate
             recommendations. In: Proc. of the Int’l Conf. on Software Maintenance and Evolution (ICSME). Bremen: IEEE, 2015. 261−270.
             [doi: 10.1109/ICSM.2015.7332472]
         [16]    Zanjani MB,  Kagdi H, Bird C.  Automatically  recommending  peer  reviewers in  modern  code review. IEEE Trans. on Software
             Engineering, 2016,42(6):530−543. [doi: 10.1109/TSE.2015.2500238]
         [17]    Lu S, Yang  D,  Hu J,  Zhang  X.  Code reviewer recommendation based  on time  and impact factor for pull  request in  Github.
             Computer Systems Applications, 2016,25(12):155−161 (in Chinese with English abstract).
         [18]    Liao ZF, Wu ZX, Wu  JS, Zhang Y, Liu  JY, Long  J. TIRR: A code  reviewer  recommendation algorithm with  topic model and
             reviewer influence. In: Proc. of the 2019 IEEE Global Communications Conf. (GLOBECOM). Waikoloa: IEEE, 2019. 1−6.
         [19]    Mihalcea R, Tarau P. Textrank: Bringing order into text. In: Proc. of the 2004 Conf. on Empirical Methods in Natural Language
             Processing. Barcelona: Association for Computational Linguistics, 2004. 404−411.
         [20]    Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab, 1999.
         [21]    Nallapati R, Zhai FF, Zhou BW. SummaRuNNer: A recurrent neural network based sequence model for extractive summarization
             of documents. In: Proc. of the 31st AAAI Conf. on Artificial Intelligence (AAAI 2017). San Francisco: AAAI, 2017. 3075−3081.
   30   31   32   33   34   35   36   37   38   39   40