Page 147 - 《软件学报》2021年第5期
P. 147

王晓峰  等:可满足性问题中信念传播算法的收敛性分析                                                      1371


                [36]    Tatikonda  S,  Jordan MI. Loopy  belief  propagation and Gibbs measure. In:  Proc.  of  the  18th Annual Conf. on Uncertainty  in
                     Artificial Intelligence. 2002. 493−500.
                [37]    Heskes T. On the uniqueness of loopy belief propagation fixed points. Neural Computation, 2004,16(11):2379−2413.
                [38]    Ihler AT, Lii JWF, Willsky AS. Loopy belief propagation: Convergence and effects of message errors. Machine Learning Research,
                     2005,6(1):905−936.
                [39]    Shi XQ, Schonfeld D, Tuninetti D. Message error analysis of loopy belief propagation for the sum-product algorithm. Computer
                     and Information Science, 2010,1009:1−30.
                [40]    Feige U, Mossel E, Vilenchik D. Complete convergence of message passing algorithms for some satisfiability problems. Theory of
                     Computing, 2013,9(19):617−651.
                [41]    Wang XF, Xu DY, Wei L. Convergence of warning propagation algorithms for random satisfiable instances. Ruan Jian Xue Bao/
                     Journal of Software, 2013,24(1):1−11 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4213.htm [doi: 10.3724/
                     SP.J.1001.2013.04213]
                [42]    Wang XF,  Xu DY. Convergence  of  the  belief  propagation algorithm for RB model  instances. Ruan  Jian Xue  Bao/Journal of
                     Software, 2016,27(11):2712−2724 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4877.htm [doi: 10.13328/j.
                     cnki.jos.004877]
                [43]    Wang  XF, Xu DY. Sufficient  conditions for  convergence of the  warning  propagation  algorithm.  Ruan Jian Xue  Bao/Journal of
                     Software, 2016,27(12):3003−3013 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4940.htm [doi: 10.13328/j.
                     cnki.jos.004940]
                [44]    Wang XF, Xu DY, Jiang  JL, Tang YH. A sufficient condition  for survey  propagation convergence.  SCIENTIA  SINICA
                     Informationis, 2017,47(12):1646−1661 (in Chinese with English abstract).
                [45]    Du J, Ma S, Wu  YC,  Kar S,  Moura  JMF.  Convergence  analysis of distributed inference  with vector valued Gaussian belief
                     propagation. Journal of Machine Learning Research, 2018,18(172):1−38.
                [46]    Du J, Ma S, Wu YC, Kar S, Moura JMF. Convergence analysis of the information matrix in Gaussian belief propagation. In: Proc.
                     of the IEEE Int’l Conf. on Acoustics, Speech and Signal Processing. 2017. 4074−4078.
                [47]    Du J, Ma S, Wu YC, Kar S, Moura JMF. Convergence analysis of belief propagation for pairwise linear Gaussian models. In: Proc.
                     of the IEEE Global Conf. on Signal and Information Processing. 2017. 548−552.
                [48]    Su Q,  Wu  YC.  Convergence  analysis of the variance in Gaussian belief  propagation. IEEE Trans. on Signal  Processing, 2014,
                     62(19):5119−5131.
                [49]    Su Q,  Wu  YC. On convergence  conditions of Gaussian belief propagation. IEEE  Trans.  on Signal Processing, 2015,63(5):
                     1144−1155.
                [50]    Park S, Shin J. Convergence and correctness of max-product belief propagation for linear programming. Siam Journal on Discrete
                     Mathematics, 2017,31(3):2228−2246.
                [51]    Wang Y,  Reyes MG, Neuhoff  DL. Correct  convergence of  min-sum loopy belief propagation in  a block  interpolation problem.
                     arXiv Preprint arXiv:1702.06391, 2017.
                [52]    Sui T, Marelli D, Fu M. Convergence analysis for guassian belief propagation: Dynamic behaviour of marginal covariances. In:
                     Proc. of the IEEE Int’l Conf. on Acoustics, Speech and Signal Processing. 2016. 2599−2602.
                [53]    Mooij JM, Kappen HJ. Sufficient conditions for convergence of the sum-product algorithm. IEEE Trans. on Information Theory,
                     2007,53(12):4422−4437.
                [54]    Dieudonne J. Foundations of Modern Analysis. New York: Academic Press, 1960.

                 附中文参考文献:
                 [18]  赵春艳,郑志明.一种基于变量熵求解约束满足问题的置信传播算法.中国科学:信息科学,2012,42(9):1170−1180.
                 [19]  殷明浩,周俊萍,孙吉贵,谷文祥.求解 QBF 问题的启发式调查传播算法.软件学报,2011,22(7):1538−1550. http://www.jos.org.cn/
                     1000-9825/3859.htm [doi: 10.3724/SP.J.1001.2011.03859]
                 [41]  王晓峰,许道云,韦立.随机实例集上警示传播算法的收敛性.软件学报,2013,24(1):1−11. http://www.jos.org.cn/1000-9825/4213.
                     htm [doi: 10.3724/SP.J.1001.2013.04213]
   142   143   144   145   146   147   148   149   150   151   152