Page 146 - 《软件学报》2021年第5期
P. 146

1370                                     Journal of Software  软件学报 Vol.32, No.5,  May 2021

                [10]    Moskewicz MW, Madigan CF, Zhao Y. Chaff: Engineering an efficient SAT solver. In: Proc. of the 38th Design Automation. 2001.
                     530−535.
                [11]    Goldberg E, Novikov Y. BerkMin: A fast and robust SAT-solver. In: Proc. of the Design Automation and Test in Europe. 2002.
                     142−149.
                [12]    Eén  N, Sörensson N.  An  Extensible SAT-solver:  Theory  and  Applications of Satisfiability. Berlin: Springer-Verlag, 2004.
                     502−518.
                [13]    Zhang H. SATO: An efficient propositional prover. In: Proc. of the Int’l Conf. on Automated Deduction. 1997. 272−275.
                [14]    Silva JP,  Sakallah KA. GRASP: A search algorithm for  propositional  satisfiability.  IEEE Trans.  on Computers,  1999,48(5):
                     506−521.
                [15]    Selman B, Kautz H, Cohen B. Noise strategies for improving local search. In: Proc. of the AAAI. 1994. 337−343.
                [16]    Selman B, Levesque HJ, Mitchell D. A new method for solving hard satisfiability problem. In: Proc. of the AAAI. 1992. 440−446.
                [17]    Pearl J. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman Publishers, 1988.
                [18]    Zhao CY, Zheng ZM. A belief-propagation algorithm based on variable entropy for constraint satisfaction problems. SCIENTIA
                     SINICA Informationis, 2012,42(9):1170−1180 (in Chinese with English abstract).
                [19]    Yin MH, Zhou JP, Sun JG, Gu WX. Heuristic survey propagation algorithm for solving QBF problem. Ruan Jian Xue Bao/Journal
                     of Software, 2011,22(7):1538−1550 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3859.htm [doi: 10.3724/
                     SP.J.1001.2011.03859]
                [20]    Ravanbakhsh S, Greiner R. Perturbed message passing for constraint satisfaction problems. Artificial Intelligence, arXiv Preprint
                     arXiv:1401.6686, 2014.
                [21]    Chieu HL, Lee WS. Relaxed survey propagation for the weighted maximum satisfiability problem. Journal of Artificial Intelligence
                     Research, 2009,36(1):229−266.
                [22]    Bayati M, Shah D, Sharma M. Max product for maximum weight matching: Convergence, correctness, and LP duality. IEEE Trans.
                     on Information Theory, 2007,54(3):1241−1251.
                [23]    Coja-Oghlan A,  Mossel E, Vilenchik D. A spectral  approach to  analyzing belief propagation for 3-colouring.  Combinatorics,
                     Probability and Computing, 2009,18(6):881−912.
                [24]    Gamarnik D, Shah D, Wei Y. Belief propagation for min-cost network flow: Convergence and correctness. Operations Research,
                     2012,60(2):410−428.
                [25]    Sanghavi S,  Malioutov DM,  Willsky AS.  Belief propagation  and  LP relaxation for weighted  matching in general graphs. IEEE
                     Trans. on Information Theory, 2011,57(4):2203−2212.
                [26]    Sanghavi S, Shah D, Willsky AS. Message passing for maximum weight independent set. IEEE Trans. on Information Theory, 2009,
                     55(11):4822−4834.
                [27]    Hetterich S. Analysing survey propagation guided decimation on random formulas. arXiv Preprint arXiv:1602.08519, 2016.
                [28]    Amin  CO.  On belief propagation guided decimation for random  k-SAT. In: Proc. of  the  22nd Annual  ACMSIAM Symp. on
                     Discrete Algorithms. San Francisco, 2016. 957−966.
                [29]    Marino R, et al. The backtracking survey propagation algorithm for solving random K-SAT problems. Nature  Communications,
                     2016,7:Article No.12996. [doi: 10.1038/ncomms12996(2016)]
                [30]    Braunstein A,  Mezard M, Zecchina R.  Survey  propagation:  An algorithm  for  satisfiability. Random  Structures and Algorithms,
                     2005,27(2):201−226.
                [31]    Maneva E, Mossel E, Wainwright M. A new look at survey propagation and its generalizations. Journal of the ACM, 2007,54(4):
                     1089−1098.
                [32]    Yedidia JS, Freeman  WT,  Weiss  Y.  Understanding belief propagation  and its generalizations.  Artificial Intelligence, 2003,8(1):
                     239−269.
                [33]    Braunstein A, Zecchina R. Survey and belief propagation on random k-SAT. LNCS, 2004,2919(1):519−528.
                [34]    Weiss Y. Correctness of local probability propagation in graphical models with loops. Neural Computation, 2000,12(1):1−41.
                [35]    Weiss Y, Freeman WT. Correctness of belief propagation in gaussian graphical models of arbitrary topology. Neural Computation,
                     2001,13(10):2173−2200.
   141   142   143   144   145   146   147   148   149   150   151