Page 323 - 《软件学报》2020年第11期
P. 323

3638                                Journal of Software  软件学报 Vol.31, No.11, November 2020

                [24]    Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proc. of the Int’l Conf.
                     on Neural Information Processing Systems. 2012. 1097−1105.
                [25]    Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proc. of the IEEE Conf.
                     on Computer Vision and Pattern Recognition. 2016. 779−788.
                [26]    Szegedy  C, Liu  W, Jia Y, Sermanet P,  Reed S, Anguelov D,  Erhan D,  Vanhoucke V,  Rabinovich  A.  Going deeper  with
                     convolutions. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 1−9.
                [27]    He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and
                     Pattern Recognition. 2016. 770−778.
                [28]    Amrouch M, Rabi M, Es-Saady Y. Convolutional feature learning and cnn based hmm for Arabic handwriting recognition. In: Proc.
                     of the Int’l Conf. on Image and Signal Processing. Cham: Springer, 2018. 265−274.
                [29]    Bai C, Huang L, Chen JN, Pan X, Chen SY. Optimization of deep convolutional neural network for large scale image classification.
                     Ruan Jian  Xue  Bao/Journal of Software, 2018,29(4):1029−1038 (in Chinese with English abstract). http://www.jos.org.cn/1000-
                     9825/5404.htm [doi: 10.13328/j.cnki.jos.005404]
                [30]    Lin M, Chen Q, Yan S. Network in network. arXiv preprint arXiv:13124400, 2013.
                [31]    Perez L, Wang J. The effectiveness  of  data augmentation  in  image classification using  deep  learning. arXiv  preprint
                     arXiv:1712.04621, 2017.
                [32]    Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding baseline for recognition. In: Proc.
                     of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops. 2014. 806−813.
                [33]    Oquab  M,  Bottou L,  Laptev I, Sivic J. Learning  and transferring  mid-level image representations using  convolutional neural
                     networks. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2014. 1717−1724.
                [34]    Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. Decaf: A deep convolutional activation feature for generic
                     visual recognition. In: Proc. of the Int’l Conf. on Machine Learning. 2014. 647−655.
                [35]    Duan M, Wang  GP, Niu  CY.  Method of small sample size image recognition based on  convolution neural network.  Computer
                     Engineering and Design, 2018,39(1):224−229 (in Chinese with English abstract).
                [36]    Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Proc. of the Advances in
                     Neural Information Processing Systems. 2014. 3320−3328.
                [37]    Bishop CM, Nasrabadi NM. Pattern Recognition and Machine Learning. Cambridge: Academic Press, 2006.
                [38]    Shewhart WA, Wilks SS. Applied Logistic Regression. 2nd ed., New York: John Wiley & Sons, 2005.
                [39]    Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked convolutional auto-encoders for hierarchical feature extraction. In: Proc. of
                     the Int’l Conf. on Artificial Neural Networks. Berlin, Heidelberg: Springer-Verlag, 2011. 52−59.
                [40]    Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Proc. of the European Conf. on Computer Vision.
                     Cham: Springer-Verlag, 2014. 818−833.
                [41]    Zeiler MD, Krishnan D, Taylor GW,  Fergus R. Deconvolutional  networks.  In:  Proc. of the Computer Vision and  Pattern
                     Recognition. San Francisco, 2010. 2528−2535.
                [42]    Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intelligent Systems and Their Applications,
                     1998,13(4):18−28.
                [43]    Walker SH, Duncan DB. Estimation of the probability of an event as a function of several independent variables. Biometrika, 1967,
                     54(1-2):167−179.
                [44]    Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Human Genetics, 2012,7(2):179−188.
                [45]    Swain PH,  Hauska  H.  The decision tree  classifier: Design  and potential. IEEE  Trans. on Geoscience  Electronics, 1977,15(3):
                     142−147.
                [46]    Murphy KP. Naive Bayes Classifiers. University of British Columbia, 2006. 1−8.
                [47]    Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans. on Information Theory, 1967,13(1):21−27.
                [48]    Zhou ZH. Machine Learning. Beijing: Tsinghua University Press, 2016. 98−101 (in Chinese).
                [49]    Ho  TK.  Random  decision forests. In: Proc. of 3rd Int’l  Conf. on  Document  Analysis  and Recognition.  Montreal: IEEE, 1995.
                     278−282.
   318   319   320   321   322   323   324   325   326   327   328