Page 322 - 《软件学报》2020年第11期
P. 322
李娜 等:一种基于卷积神经网络的砂岩显微图像特征表示方法 3637
References:
[1] Albar A, Osman MH, Abdullah MS, Ismail BN. Classification of intrusive igneous rocks using digital image processing: A binary
approach. Journal of Engineering Science, 2013,9:11−19.
[2] Młynarczuk M, G Rszczyk A, Ślipek B. The application of pattern recognition in the automatic classification of microscopic rock
images. Computers & Geosciences, 2013,60:126−133.
[3] Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB. Publishing House of Elec, 2013.
[4] Chatterjee S. Vision-based rock-type classification of limestone using multi-class support vector machine. Applied Intelligence,
2013,39(1):14−27.
[5] Li N, Hao H, Gu Q, Wang D, Hu X. A transfer learning method for automatic identification of sandstone microscopic images.
Computers & Geosciences, 2017,103:111−121.
[6] Chatterjee S, Bhattacherjee A. Genetic algorithms for feature selection of image analysis-based quality monitoring model: An
application to an iron mine. Engineering Applications of Artificial Intelligence, 2011,24(5):786−795.
[7] Arivazhagan S, Ganesan L. Texture classification using wavelet transform. Pattern Recognition Letters, 2003,24(9):1513−1521.
[8] Choy SK, Tong CS. Statistical wavelet subband characterization based on generalized gamma density and its application in texture
retrieval. IEEE Trans. on Image Processing, 2010,19(2):281−289.
[9] Sun CN, Yi Q, Cui L. Application of wavelet transform and fuzzy clustering in thermopaint color image segmentation. Ruan Jian
Xue Bao/Journal of Software, 2012,23:64−68 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/12025.htm
[10] Vargas JF, Ferrer MA, Travieso CM, Alonso JB. Off-line signature verification based on grey level information using texture
features. Pattern Recognition, 2011,44(2):375−385.
[11] Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans. on Systems, Man and
Cybernetics, 1973,SMC-3(6):610−621.
[12] Ojala T, Valkealahti K, Oja E, Pietik Inen M. Texture discrimination with multidimensional distributions of signed gray level
differences. Pattern Recognition, 2001,34(3):727−739.
[13] Feng J, Qing G, Huizhen H, Na L. Feature extraction and grain segmentation of sandstone images based on convolutional neural
networks. In: Proc. of the Int’l Conf. on Pattern Recognition. 2018. 2636−2641.
[14] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998,86(11):
2278−2324.
[15] Singh N, Singh T, Tiwary A, Sarkar KM. Textural identification of basaltic rock mass using image processing and neural network.
Computational Geosciences, 2010,14(2):301−310.
[16] Jiang W, Lam KM, Shen TZ. Efficient edge detection using simplified Gabor wavelets. IEEE Trans. Syst. Man Cybern. Part B,
2009,39(4):1036−1047.
[17] Lowe DG. Object recognition from local scale-invariant features. In: Proc. of the 7th IEEE Int’l Conf. on Computer Vision. 1999.
1150−1157.
[18] Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features. In: Proc. of the European Conf. on Computer Vision. Berlin:
Springer-Verlag, 2006. 404−417.
[19] Zhou SR, Yin JP. LBP texture feature based on Haar characteristics. Ruan Jian Xue Bao/Journal of Software, 2013,24(8):
1909−1926 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4277.htm [doi: 10.3724/SP.J.1001.2013.04277]
[20] Sun J, He FZ, Chen X, Yuan ZY. Efficient multi-scale texture recognition algorithm. Ruan Jian Xue Bao/Journal of Software, 2014,
25:278−289 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4277.htm [doi: 10.3724/SP.J.1001.2013.04277]
[21] Wang H, Fu G, Cai Y, Wang S. Multiple feature fusion based image classification using a non-biased multi-scale kernel machine.
In: Proc. of the Int’l Conf. on Fuzzy Systems and Knowledge Discovery. IEEE, 2016. 700−704.
[22] Liu T, Zhou XC, Yan XJ. Texture similarity calculation with LBP features fused by multi-channel and multi-mode. Application
Reasearch of Computers, 2019,36(1):1−8 (in Chinese with English abstract).
[23] Isaza C, Anaya K, De Paz JZ, Vasco-Leal JF, Hernandez-Rios I, Mosquera-Artamonov JD. Image analysis and data mining
techniques for classification of morphological and color features for seeds of the wild castor oil plant (Ricinus communis L.).
Multimedia Tools and Applications, 2018,77(2):2593−2610.