Page 322 - 《软件学报》2020年第11期
P. 322

李娜  等:一种基于卷积神经网络的砂岩显微图像特征表示方法                                                   3637


                 References:
                 [1]    Albar A, Osman MH, Abdullah MS, Ismail BN. Classification of intrusive igneous rocks using digital image processing: A binary
                     approach. Journal of Engineering Science, 2013,9:11−19.
                 [2]    Młynarczuk M, G Rszczyk A, Ślipek B. The application of pattern recognition in the automatic classification of microscopic rock
                     images. Computers & Geosciences, 2013,60:126−133.
                 [3]    Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB. Publishing House of Elec, 2013.
                 [4]    Chatterjee S. Vision-based rock-type classification of limestone using multi-class support vector machine. Applied Intelligence,
                     2013,39(1):14−27.
                 [5]    Li N, Hao H, Gu Q, Wang D, Hu X. A transfer learning method for automatic identification of sandstone microscopic images.
                     Computers & Geosciences, 2017,103:111−121.
                 [6]    Chatterjee S,  Bhattacherjee A.  Genetic  algorithms for feature selection of image  analysis-based quality  monitoring  model: An
                     application to an iron mine. Engineering Applications of Artificial Intelligence, 2011,24(5):786−795.
                 [7]    Arivazhagan S, Ganesan L. Texture classification using wavelet transform. Pattern Recognition Letters, 2003,24(9):1513−1521.
                 [8]    Choy SK, Tong CS. Statistical wavelet subband characterization based on generalized gamma density and its application in texture
                     retrieval. IEEE Trans. on Image Processing, 2010,19(2):281−289.
                 [9]    Sun CN, Yi Q, Cui L. Application of wavelet transform and fuzzy clustering in thermopaint color image segmentation. Ruan Jian
                     Xue Bao/Journal of Software, 2012,23:64−68 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/12025.htm
                [10]    Vargas JF, Ferrer  MA,  Travieso  CM,  Alonso JB. Off-line signature verification based on grey  level  information using texture
                     features. Pattern Recognition, 2011,44(2):375−385.
                [11]    Haralick RM,  Shanmugam K,  Dinstein  IH. Textural  features  for  image classification. IEEE Trans.  on Systems, Man and
                     Cybernetics, 1973,SMC-3(6):610−621.
                [12]    Ojala T, Valkealahti K, Oja E,  Pietik  Inen M. Texture  discrimination with multidimensional  distributions  of  signed  gray level
                     differences. Pattern Recognition, 2001,34(3):727−739.
                [13]    Feng J, Qing G, Huizhen H, Na L. Feature extraction and grain segmentation of sandstone images based on convolutional neural
                     networks. In: Proc. of the Int’l Conf. on Pattern Recognition. 2018. 2636−2641.
                [14]    LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998,86(11):
                     2278−2324.
                [15]    Singh N, Singh T, Tiwary A, Sarkar KM. Textural identification of basaltic rock mass using image processing and neural network.
                     Computational Geosciences, 2010,14(2):301−310.
                [16]    Jiang W, Lam KM, Shen TZ. Efficient edge detection using simplified Gabor wavelets. IEEE Trans. Syst. Man Cybern. Part B,
                     2009,39(4):1036−1047.
                [17]    Lowe DG. Object recognition from local scale-invariant features. In: Proc. of the 7th IEEE Int’l Conf. on Computer Vision. 1999.
                     1150−1157.
                [18]    Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features. In: Proc. of the European Conf. on Computer Vision. Berlin:
                     Springer-Verlag, 2006. 404−417.
                [19]    Zhou SR,  Yin JP. LBP  texture feature based on  Haar characteristics.  Ruan Jian  Xue  Bao/Journal of Software, 2013,24(8):
                     1909−1926 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4277.htm [doi: 10.3724/SP.J.1001.2013.04277]
                [20]    Sun J, He FZ, Chen X, Yuan ZY. Efficient multi-scale texture recognition algorithm. Ruan Jian Xue Bao/Journal of Software, 2014,
                     25:278−289 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4277.htm [doi: 10.3724/SP.J.1001.2013.04277]
                [21]    Wang H, Fu G, Cai Y, Wang S. Multiple feature fusion based image classification using a non-biased multi-scale kernel machine.
                     In: Proc. of the Int’l Conf. on Fuzzy Systems and Knowledge Discovery. IEEE, 2016. 700−704.
                [22]    Liu T, Zhou XC, Yan XJ. Texture similarity calculation with LBP features fused by multi-channel and multi-mode. Application
                     Reasearch of Computers, 2019,36(1):1−8 (in Chinese with English abstract).
                [23]    Isaza C, Anaya K, De  Paz  JZ, Vasco-Leal JF,  Hernandez-Rios  I,  Mosquera-Artamonov JD.  Image analysis  and  data mining
                     techniques for  classification of  morphological  and  color features for seeds of the  wild  castor oil plant (Ricinus communis  L.).
                     Multimedia Tools and Applications, 2018,77(2):2593−2610.
   317   318   319   320   321   322   323   324   325   326   327