Page 242 - 《软件学报》2020年第11期
P. 242
尹子都 等:基于采样的在线大图数据收集和更新 3557
[9] Pavai G, Geetha TV. Improving the freshness of the search engines by a probabilistic approach based incremental crawler.
Information Systems Frontiers, 2017,19(5):1013−1028. [doi: 10.1007/s10796-016-9701-7]
[10] Matteo R, Fabio V. MiSoSouP: Mining interesting subgroups with sampling and pseudodimension. In: Proc. of the 24th ACM Int’l
Conf. on Knowledge Discovery & Data Mining. 2018. 2130−2139. [doi: 10.1145/3219819.3219989]
[11] Nikolov A, Haase P, Herzig DM, Trame J, Kozlov A. Combining RDF graph data and embedding models for an augmented
knowledge graph. In: Proc. of the Companion of the Web Conf. 2018. 977−980. [doi: 10.1145/3184558.3191527]
[12] Andreou AS, Chatzis SP. Software defect prediction using doubly stochastic Poisson processes driven by stochastic belief networks.
Journal of Systems and Software, 2016,122:72−82. [doi: 10.1016/j.jss.2016.09.001]
[13] Stivala AD, Koskinen JH, Rolls DA, Wang P, Robins G. Snowball sampling for estimating exponential random graph models for
large networks. Social Networks, 2016,47:167−188. [doi: 10.1016/j.socnet.2015.11.003]
[14] Tao J, Zhao QQ, Cao PF, Wang Z, Zhang Y. APK-DFS: An automatic interaction system based on depth-first-search for APK. In:
Proc. of the Int’l Conf. on Algorithms and Architectures for Parallel Processing. 2017. 420−430. [doi: 10.1007/978-3-319-65482-
9_29]
[15] Khan A, Sharma DK. Self-Adaptive ontology based focused crawler for social bookmarking sites. Int’l Journal of Information
Retrieval Research, 2017,7(2):51−67. [doi: 10.4018/IJIRR.2017040104]
[16] Wu CS, Hou W, Shi YQ, Liu T. A Web search contextual crawler using ontology relation mining. In: Proc. of the Int’l Conf. on
Computational Intelligence and Software Engineering. 2009. 1−4. [doi: 10.1109/CISE.2009.5365842]
[17] Batzios A, Dimou C, Symeonidis AL, Mitkas PA. BioCrawler: An intelligent crawler for the semantic Web. Expert Systems with
Applications, 2008,35(1-2):524−530. [doi: 10.1016/j.eswa.2007.07.054]
[18] Arulampalam MS, Evans RJ, Letaief KB. Importance sampling for error event analysis of HMM frequency line trackers. IEEE
Trans. on Signal Processing, 2002,50(2):411−424. [doi: 10.1109/78.978395]
[19] Ahmed NK, Duffield N, Willke TL, Rossi RA. On sampling from massive graph streams. Proc. of the VLDB Endowment, 2017,
10(11):1430−1441. [doi: 10.14778/3137628.3137651]
[20] Yin ZD, Yue K, Wu H, Su YJ. Adaptive and parallel data acquisition from online big graphs. In: Proc. of the Int’l Conf. on
Database Systems for Advanced Applications. LNCS 10827, Gold Coast: Springer-Verlag, 2018. 223−331. [doi: 10.1007/978-3-
319-91452-7_21]
[21] Sharma V, Kumar M, Vig R. A hybrid revisit policy for web search. Journal of Advances in Information Technology, 2012,3(1):
36−47. [doi: 10.4304/jait.3.1.36-47]
[22] Radinsky K, Bennett PN. Predicting content change on the Web. In: Proc. of the 6th ACM Int’l Conf. on Web Search and Data
Mining. 2013. 415−424. [doi: 10.1145/2433396.2433448]
[23] Cho J, Ntoulas A. Effective change detection using sampling. In: Proc. of the Very Large Data Bases Conf. 2002. 514−525. [doi: 10.
1016/B978-155860869-6/50052-4]
[24] Faure H, Lemieux C. Improved Halton sequences and discrepancy bounds. Monte Carlo Methods Applications, 2010,16(3):1−18.
[doi: 10.1515/mcma.2010.008]
[25] Leskovec J, Lang K, Dasgupta A, Mahoney M. Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters. Internet Mathematics, 2009,6(1):29−123. [doi: 10.1080/15427951.2009.10129177]
[26] McAuley J, Leskovec J. Learning to discover social circles in ego networks. In: Proc. of the Int’l Conf. on Neural Information
Processing Systems. 2012. 539−547.
[27] Fu KW, Chan CH, Chau M. Assessing censorship on microblogs in China: Discriminatory keyword analysis and impact evaluation
of the ‘real name registration’ policy. IEEE Internet Computing, 2013,17(3):42−50. [doi: 10.1109/MIC.2013.28]
[28] Le BD, Nguyen HX, Shen H, Falkner N. GLFR: A generalized LFR benchmark for testing community detection algorithms. In:
Proc. of the Int’l Conf. on Computer Communication and Networks. 2017. 1−9. [doi: 10.1109/ICCCN.2017.8038442]
附中文参考文献:
[1] 王建民.领域大数据应用开发与运行平台技术研究.软件学报,2017,28(6):1516−1528. http://www.jos.org.cn/1000-9825/5231.htm
[doi: 10.13328/j.cnki.jos.005231]