Page 122 - 摩擦学学报2025年第5期
P. 122

756                                    摩擦学学报(中英文)                                        第 45 卷

            着现象;抗剪切强度低的基体材料(如油和脂)能够提                               lubricants  on  the  friction  and  damage  performances  of  wheel  and
            高轨顶摩擦调节剂的润滑性能;通过改变固体颗粒或                                rail[D]. Chengdu: Southwest Jiaotong University, 2019 (in Chinese)
                                                                   [宋靖东. 固体摩擦调节剂和润滑剂对轮轨黏着与损伤性能影
            其他添加剂的含量能够改变单基体材料的减摩性能.
                                                                   响[D]. 成都;西南交通大学, 2019].
                c. 不同基体轨顶摩擦调节剂的安全施加量从高
                                                               [  9  ]   Stock R, Stanlake L, Hardwick C, et al. Material concepts for top of
            到低依次是水基、油基和脂基轨顶减摩调控材料. 在
                                                                   rail  friction  management–Classification,  characterisation  and
            安全施加量下,轨顶摩擦调节剂的保持能力从高到低                                application[J]. Wear, 2016, 366–367: 225–232. doi:10.1016/j.wear.
            依次是脂基、油基、冬季水基、混合水基以及夏季水                                2016.05.028.
            基摩擦调节剂. 应用轨顶摩擦调节剂产生的黏着系数                           [10]   Eadie  D  T,  Oldknow  K  D,  Maglalang  L,  et  al.  Implementation  of

            越高,其在轮轨界面间的保持能力越差.                                     wayside top of rail friction control on North American heavy haul
                                                                   freight  railways[C]//The  Seventh  World  Congress  on  Railway
                d. 应用轨顶摩擦调节剂可以大幅降低轮轨磨损,
                                                                   Research, Montreal, 2006.
            轮轨表面粗糙度未发生明显变化. 轨顶摩擦调节剂的
                                                               [11]   Matsumoto  K,  Suda  Y,  Fujii  T,  et  al.  The  optimum  design  of  an
            减摩性能从高到低依次是冬季水基、油基、混合水
                                                                   onboard friction control system between wheel and rail in a railway
            基、脂基和夏季水基轨顶摩擦调节剂,机械混合夏季                                system  for  improved  curving  negotiation[J].  Vehicle  System
            和冬季水基轨顶摩擦调节剂不会恶化混合后材料的                                 Dynamics,   2006,   44(sup1):   531–540.   doi:   10.1080/

            减摩性能.                                                  00423110600875294.
                                                               [12]   Pan  Jianying,  Li  Yingqi,  Liang  Xu,  et  al.  Review  of  causes  and
            参 考 文 献
                                                                   remediation of rail corrugation with small-radius curves in urban rail
            [  1  ]   Li  Pingshu.  China’s  high-speed  rail  network  80%  complete  transit[J]. Railway Transport and Economy, 2023, 45(7): 76–82 (in
                 [EB/OL].   http://www.china.org.cn/business/2024-01/10/content_  Chinese) [潘健英, 李英奇, 梁旭, 等. 城轨小半径曲线钢轨波磨的
                 116932215.htm (in Chinese) [李平书, 我国“八纵八横”高速铁路     成因与整治研究综述[J]. 铁道运输与经济, 2023, 45(7): 76–82].
                 网主通道已建成约80% [EB/OL]. http://news.china.com.cn/2024-  doi: 10.16668/j.cnki.issn.1003-1421.2023.07.11.
                 01/10/content_116932139.shtml, 2024-1-10].    [13]   Li  Shengjie.  Study  on  the  effect  of  friction  modifier  and  its
            [  2  ]   Cheng Zhuo, Shi Lubing, Wang Wenjian, et al. Effects of two kinds  application  conditions  on  adhesion  and  damage  behaviors  of
                 of  water-based  friction  modifiers  on  wheel-rail  adhesion  and  wheel/rail[D].  Chengdu:  Southwest  Jiaotong  University,  2022  (in
                 damage[J]. Tribology, 2021, 41(2): 176–186 (in Chinese) [程焯, 师  Chinese) [李胜杰. 摩擦调节剂及其施用条件对轮轨黏着与损伤行
                 陆冰, 王文健, 等. 两种水基摩擦改性剂对轮轨黏着和损伤性能的                  为影响研究[D]. 成都: 西南交通大学, 2022].
                 影 响 [J].  摩 擦 学 学 报 ,  2021,  41(2):  176–186].  doi:  10.16078/j.  [14]   Khan  S  A,  Persson  I,  Lundberg  J,  et  al.  Prediction  of  top-of-rail
                 tribology.2020109.                                friction  control  effects  on  rail  RCF  suppressed  by  wear[J].  Wear,
            [  3  ]   Fang Congcong, Ding Yi, Chen Jun, et al. Analysis and application  2017, 380–381: 106–114. doi:10.1016/j.wear.2017.03.010.
                 of  train  wheel  flange  lubrication  materials[J].  Tribology,  2024,  [15]   Wu B N, Shi L B, Ding H, et al. Influence of different solid particles
                 44(2): 143–153 (in Chinese) [方聪聪, 丁一, 陈军, 等. 列车轮缘润  in  friction  modifier  on  wheel-rail  adhesion  and  damage
                 滑材料性能分析与应用研究[J]. 摩擦学学报(中英文), 2024,                behaviours[J]. Wear, 2023, 522: 204833. doi: 10.1016/j.wear.2023.
                 44(2): 143–153]. doi: 10.16078/j.tribology.2022249.  204833.
            [  4  ]   Meehan  P  A,  Liu  Xiaogang.  Modelling  and  mitigation  of  wheel  [16]   Gala  R,  Kvarda  D,  Omasta  M,  et  al.  The  role  of  constituents
                 squeal  noise  under  friction  modifiers[J].  Journal  of  Sound  and  contained  in  water-based  friction  modifiers  for  top-of-rail
                 Vibration, 2019, 440: 147–160. doi: 10.1016/j.jsv.2018.10.025.  application[J].  Tribology  International,  2018,  117:  87–97.  doi:  10.
            [  5  ]   Zhang  Hua,  Huang  Jinwei,  Wang  Wenjian,  et  al.  Effect  of  third  1016/j.triboint.2017.08.019.
                 mediums  on  the  formation  and  evolution  of  rail  corrugation[J].  [17]   Egana J I, Vinolas J, Gil-Negrete N. Effect of liquid high positive
                 Wear, 2023, 523: 204810. doi: 10.1016/j.wear.2023.204810.  friction (HPF) modifier on wheel-rail contact and rail corrugation[J].
            [  6  ]   Lu Xin, Makowsky T W, Eadie D T, et al. Friction management on a  Tribology  International,  2005,  38(8):  769–774.  doi:  10.1016/j.
                 Chinese  heavy  haul  coal  line[J].  Proceedings  of  the  Institution  of  triboint.2004.11.006.
                 Mechanical  Engineers,  Part  F:  Journal  of  Rail  and  Rapid  Transit,  [18]   He Chenggang, Zhang Peizhen, Zou Gang, et al. Research progress
                 2012, 226(6): 630–640. doi: 10.1177/0954409712447170.  on  wheel-rail  contact  adhesion  characteristic  under  environmental
            [  7  ]   Hardwick C, Lewis R, Stock R. The effects of friction management  conditions[J]. Tribology, 2022, 42(3): 642–656 (in Chinese) [何成
                 materials  on  rail  with  pre  existing  rcf  surface  damage[J].  Wear,  刚, 张佩祯, 邹港, 等. 自然环境条件下轮轨接触黏着特性研究
                 2017, 384–385: 50–60. doi:10.1016/j.wear.2017.04.016.  进 展 [J].  摩 擦 学 学 报 ,  2022,  42(3):  642–656].  doi:  10.16078/j.
            [  8  ]   Song  Jingdong.  The  influence  of  solid  friction  modifier  and  tribology.2021065.
   117   118   119   120   121   122   123   124   125   126   127