Page 46 - 摩擦学学报2025年第4期
P. 46

534                                    摩擦学学报(中英文)                                        第 45 卷


               (a)  320   Maximum temperature      450            (b)  275  Maximum temperature       450
                  300     Minimum temperature      400                      Minimum temperature       400
                  280     Transmition power        350               250    Transmition power         350
                 Temperature/℃  240                250 Transmition power/kW  Temperature/℃  225       250 Transmition power/kW
                                                                                                      300
                                                   300
                  260
                                                   200
                                                                                                      200
                  220
                                                                     200
                  200
                                                                                                      100
                                                   100
                  180                              150               175                              150
                  160                              50                                                 50
                  140                              0                 150                              0
                      40  60  80  100  120  140  160                     40  60  80  100  120  140  160
                               Velocity/(m/s)                                     Velocity/(m/s)
                           Fig. 12    Variation of maximum and minimum temperatures with speed: (a) pinion; (b) wheel
                                      图 12    齿轮最高温和最低温随转速变化:(a)小轮;(b)大轮
            转速提高,齿轮最高温和最低温均提高,且转速越高,                               progress  and  prospects[J].  Tribology,  2024,  44(5):  715–728  (in

            轮体的温差越大. 温差将影响齿轮的热应力和变形,                               Chinese) [赵景鑫, 姜程, 李维民, 等. 微点蚀损伤的研究进展与展
                                                                   望[J]. 摩擦学学报(中英文), 2024, 44(5): 715–728]. doi: 10.16078/j.
            齿轮轮体温差越大其变形和热应力越大. 相比40 m/s
                                                                   tribology.2023060.
            工况,160 m/s下大轮齿轮的温差提高70 ℃,小轮温差
                                                               [  2  ]   Rashid  H  S  J,  Place  C  S,  Mba  D,  et  al.  Reliability  model  for
            提高60 ℃,在实际过程中将影响齿轮的齿隙,降低齿
                                                                   helicopter  main  gearbox  lubrication  system  using  influence
            轮的运转稳定性,齿轮胶合、点蚀等失效风险加剧.                                diagrams[J].  Reliability  Engineering  &  System  Safety,  2015,  139:

                                                                   50–57. doi: 10.1016/j.ress.2015.01.021.
            4    结论                                            [  3  ]   Astridge  D  G.  Helicopter  Transmissions —design  for  Safety  and

                                                                   Reliability[J].  Proceedings  of  the  Institution  of  Mechanical
                针对航空弧齿锥齿轮线速度对喷油润滑影响不
                                                                   Engineers, Part G: Journal of Aerospace Engineering, 1989, 203(2):
            清的问题,考虑摩擦、风阻多热源和对流换热效应,构
                                                                   123–138. doi: 10.1243/pime_proc_1989_203_063_01.
            建了航空发动机喷油润滑弧齿锥齿轮热-流耦合仿真
                                                               [  4  ]   Anderson  N,  Loewenthal  S.  An  analytical  method  to  predict  of
            分析模型,实现了齿面油气状态、齿轮对流换热分                                 aircraft gear boxes [R]: Technical memorandum NASA–TM–83716,
            布、功率损失及轮体温度的分析,具体结论如下:                                 1984.
                a. 随着线速度从40 m/s提高到160 m/s,射流发生                 [  5  ]   Lu  Fengxia,  Wang  Meng,  Pan  Wenbin,  et  al.  CFD-based
            破碎偏移,齿面平均油气比下降83.5%,齿面和端面对                             investigation  of  lubrication  and  temperature  characteristics  of  an
            流换热均值分别提高约120%和170%. 但120 m/s之                         intermediate  gearbox  with  splash  lubrication[J].  Applied  Sciences,
            后,由于滑油体积分数显著降低,齿面出现乏油现象,                               2020, 11(1): 352. doi: 10.3390/app11010352.
                                                               [  6  ]   Niemann G, Winter, H. Machinene lemente[M]. Translated by Yu
            啮合区对流换热系数由增长趋势变为下降趋势,导致
                                                                   Mengsheng,  Beijing:  China  Machine  Press,  1989  (in  Chinese)  [尼
            该部分轮齿易发生胶合失效.
                                                                   曼, 温特尔. 机械零件-第二卷[M]. 余梦生译 北京: 机械工业出版
                b. 随着线速度提高,齿轮的风阻力矩显著提高,                            社, 1989].
            二者呈现近似指数的分布规律. 转速升高,齿轮副传                           [  7  ]   Simmons K, Johnson G, Wiedemann N. Effect of pressure and oil
            动效率降低,且在80 m/s之后风阻损失成为齿轮传动                             mist  on  windage  power  loss  of  a  shrouded  spiral  bevel
            效率降低和产热的主要原因,并在160 m/s时占功率损                            gear[C]//Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and
                                                                   Alternative  Fuels;  Wind  Turbine  Technology.  June  6–10,  2011.
            失的80%以上.
                                                                   Vancouver,  British  Columbia,  Canada.  ASMEDC,  2011,  54617:
                c. 线速度增加,齿轮产热高于散热边界,导致齿
                                                                   327-335. doi:10.1115/gt2011-46426.
            轮稳态轮体温度持续上升,齿面最高稳态温度由40 m/s
                                                               [  8  ]   Webb T, Eastwick C, Morvan H. CFD modelling of gear windage
            时的169.7 ℃上升到160 m/s时的293.7 ℃. 且齿轮不同                    losses:  two  phase  modelling  using  particle  injections[C]//ASME
            部位温差增大,可能导致齿轮热变形和胶合失效风险                                2010 10th Biennial Conference on Engineering Systems Design and
            增加.                                                    Analysis, Volume 3. July 12–14, 2010. Istanbul, Turkey. ASMEDC,
                                                                   2010: 49170: 459–468. doi:10.1115/esda2010-24654.
            参 考 文 献
                                                               [  9  ]   Maccioni  L,  Concli  F.  Computational  fluid  dynamics  applied  to
            [  1  ]   Zhao Jingxin, Jiang Cheng, Li Weimin, et al. Micro-pitting: research  lubricated  mechanical  components:  review  of  the  approaches  to
   41   42   43   44   45   46   47   48   49   50   51