Page 46 - 摩擦学学报2025年第4期
P. 46
534 摩擦学学报(中英文) 第 45 卷
(a) 320 Maximum temperature 450 (b) 275 Maximum temperature 450
300 Minimum temperature 400 Minimum temperature 400
280 Transmition power 350 250 Transmition power 350
Temperature/℃ 240 250 Transmition power/kW Temperature/℃ 225 250 Transmition power/kW
300
300
260
200
200
220
200
200
100
100
180 150 175 150
160 50 50
140 0 150 0
40 60 80 100 120 140 160 40 60 80 100 120 140 160
Velocity/(m/s) Velocity/(m/s)
Fig. 12 Variation of maximum and minimum temperatures with speed: (a) pinion; (b) wheel
图 12 齿轮最高温和最低温随转速变化:(a)小轮;(b)大轮
转速提高,齿轮最高温和最低温均提高,且转速越高, progress and prospects[J]. Tribology, 2024, 44(5): 715–728 (in
轮体的温差越大. 温差将影响齿轮的热应力和变形, Chinese) [赵景鑫, 姜程, 李维民, 等. 微点蚀损伤的研究进展与展
望[J]. 摩擦学学报(中英文), 2024, 44(5): 715–728]. doi: 10.16078/j.
齿轮轮体温差越大其变形和热应力越大. 相比40 m/s
tribology.2023060.
工况,160 m/s下大轮齿轮的温差提高70 ℃,小轮温差
[ 2 ] Rashid H S J, Place C S, Mba D, et al. Reliability model for
提高60 ℃,在实际过程中将影响齿轮的齿隙,降低齿
helicopter main gearbox lubrication system using influence
轮的运转稳定性,齿轮胶合、点蚀等失效风险加剧. diagrams[J]. Reliability Engineering & System Safety, 2015, 139:
50–57. doi: 10.1016/j.ress.2015.01.021.
4 结论 [ 3 ] Astridge D G. Helicopter Transmissions —design for Safety and
Reliability[J]. Proceedings of the Institution of Mechanical
针对航空弧齿锥齿轮线速度对喷油润滑影响不
Engineers, Part G: Journal of Aerospace Engineering, 1989, 203(2):
清的问题,考虑摩擦、风阻多热源和对流换热效应,构
123–138. doi: 10.1243/pime_proc_1989_203_063_01.
建了航空发动机喷油润滑弧齿锥齿轮热-流耦合仿真
[ 4 ] Anderson N, Loewenthal S. An analytical method to predict of
分析模型,实现了齿面油气状态、齿轮对流换热分 aircraft gear boxes [R]: Technical memorandum NASA–TM–83716,
布、功率损失及轮体温度的分析,具体结论如下: 1984.
a. 随着线速度从40 m/s提高到160 m/s,射流发生 [ 5 ] Lu Fengxia, Wang Meng, Pan Wenbin, et al. CFD-based
破碎偏移,齿面平均油气比下降83.5%,齿面和端面对 investigation of lubrication and temperature characteristics of an
流换热均值分别提高约120%和170%. 但120 m/s之 intermediate gearbox with splash lubrication[J]. Applied Sciences,
后,由于滑油体积分数显著降低,齿面出现乏油现象, 2020, 11(1): 352. doi: 10.3390/app11010352.
[ 6 ] Niemann G, Winter, H. Machinene lemente[M]. Translated by Yu
啮合区对流换热系数由增长趋势变为下降趋势,导致
Mengsheng, Beijing: China Machine Press, 1989 (in Chinese) [尼
该部分轮齿易发生胶合失效.
曼, 温特尔. 机械零件-第二卷[M]. 余梦生译 北京: 机械工业出版
b. 随着线速度提高,齿轮的风阻力矩显著提高, 社, 1989].
二者呈现近似指数的分布规律. 转速升高,齿轮副传 [ 7 ] Simmons K, Johnson G, Wiedemann N. Effect of pressure and oil
动效率降低,且在80 m/s之后风阻损失成为齿轮传动 mist on windage power loss of a shrouded spiral bevel
效率降低和产热的主要原因,并在160 m/s时占功率损 gear[C]//Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and
Alternative Fuels; Wind Turbine Technology. June 6–10, 2011.
失的80%以上.
Vancouver, British Columbia, Canada. ASMEDC, 2011, 54617:
c. 线速度增加,齿轮产热高于散热边界,导致齿
327-335. doi:10.1115/gt2011-46426.
轮稳态轮体温度持续上升,齿面最高稳态温度由40 m/s
[ 8 ] Webb T, Eastwick C, Morvan H. CFD modelling of gear windage
时的169.7 ℃上升到160 m/s时的293.7 ℃. 且齿轮不同 losses: two phase modelling using particle injections[C]//ASME
部位温差增大,可能导致齿轮热变形和胶合失效风险 2010 10th Biennial Conference on Engineering Systems Design and
增加. Analysis, Volume 3. July 12–14, 2010. Istanbul, Turkey. ASMEDC,
2010: 49170: 459–468. doi:10.1115/esda2010-24654.
参 考 文 献
[ 9 ] Maccioni L, Concli F. Computational fluid dynamics applied to
[ 1 ] Zhao Jingxin, Jiang Cheng, Li Weimin, et al. Micro-pitting: research lubricated mechanical components: review of the approaches to