Page 103 - 摩擦学学报2025年第4期
P. 103
第 4 期 张亚江, 等: 油溶性纳米LaF 3 的抗微点蚀性能研究 591
coatings9010042. 020-0369-0.
[ 2 ] Wei Jing, Zhang Aiqiang, Gao Pan. A study of spur gear pitting [14] Fan Xiaoqiang, Li Xiaopeng, Zhao Zhuang, et al. Heterostructured
under EHL conditions: theoretical analysis and experiments[J]. rGO/MoS 2 nanocomposites toward enhancing lubrication function
Tribology International, 2016, 94: 146–154. doi: 10.1016/j.triboint. of industrial gear oils[J]. Carbon, 2022, 191: 84–97. doi: 10.1016/j.
2015.08.037. carbon.2022.01.037.
[ 3 ] Clarke A, Evans H P, Snidle R W. Understanding micropitting in [15] Kang Xiaohong, Wang Bin, Zhu Lei, et al. Synthesis and
gears[J]. Proceedings of the Institution of Mechanical Engineers, tribological property study of oleic acid-modified copper sulfide
Part C: Journal of Mechanical Engineering Science, 2016, 230(7-8): nanoparticles[J]. Wear, 2008, 265(1–2): 150–154. doi: 10.1016/j.
1276–1289. doi: 10.1177/0954406215606934. wear.2007.09.009.
[ 4 ] Lin Jiachun, Teng Chen, Bergstedt E, et al. A quantitatively [16] Chen Shuoshuo, Fan Shuguang, Song Ningning, et al. Load-carrying
distributed wear-measurement method for spur gears during micro- capacity and tribomechanism of DDA/MADE modified MoO 3
pitting and pitting tests[J]. Tribology International, 2021, 157: nanoparticle as an additive for alkylated naphthalene base oil[J].
106839. doi: 10.1016/j.triboint.2020.106839. Tribology International, 2024, 195: 109610. doi: 10.1016/j.triboint.
[ 5 ] Li Linlong, Wu Bi, Xue Weihai, et al. Effect of rare earth on the 2024.109610.
micro-pitting behavior in rolling contact fatigue of GCr15 bearing [17] Zhao Yanbao, Zhou Jingfang, Zhang Zhijun, et al. Effect of
steel[J]. Tribology, 2023, 43(9): 995–1005 (in Chinese) [李林龙, 吴 oleate/PS/TiO 2 composite nanospheres as additive on the antiwear
彼, 薛伟海, 等. 稀土对GCr15轴承钢滚动接触疲劳中微点蚀的影 and extreme pressure properties of liquid paraffin[J]. Tribology,
响[J]. 摩擦学学报, 2023, 43(9): 995–1005]. doi: 10.16078/j.tribology. 2001, 21(1): 73–75 (in Chinese) [赵彦保, 周静芳, 张治军, 等. 油酸/
2022155. PS/TiO 2 复合纳米微球对液体石蜡抗磨性能的影响研究[J]. 摩擦
[ 6 ] Li Jiqiang, Zhu Boqiang, Liu Zhongming, et al. Competitive failure 学学报, 2001, 21(1): 73–75]. doi: 10.3321/j.issn:1004-0595.2001.
mechanism of micro-pitting and thermal-scuffing in gear 01.018.
transmission[J]. Tribology, 2021, 41(5): 636–646 (in Chinese) [李纪 [18] Zhang Huanhuan, Lei Xue, Zhang Chunli, et al. Co-adsorption
强, 朱博强, 刘忠明, 等. 齿轮传动微点蚀与热胶合竞争性失效机 behavior and synergistic lubrication mechanism of cerium oxide
制研究[J]. 摩擦学学报, 2021, 41(5): 636–646]. doi: 10.16078/j. nano-additive and commercial additive[J]. Tribology, 2023, 43(10):
tribology.2020158. 1201–1211 (in Chinese) [张欢欢, 雷雪, 张春丽, 等. 氧化铈纳米添
[ 7 ] Wang Xiong, Dong Qingbing, Shi Xiujiang, et al. Gear pitting life 加剂与商用添加剂的共吸附行为及其协同润滑机制研究[J]. 摩
prediction based on multi-axial fatigue criterion[J]. Tribology, 2023, 擦 学 学 报 , 2023, 43(10): 1201–1211]. doi: 10.16078/j.tribology.
43(1): 92–103 (in Chinese) [王雄, 董庆兵, 史修江, 等. 基于多轴疲 2022179.
劳 准 则 的 齿 轮 点 蚀 寿 命 预 测 [J]. 摩 擦 学 学 报 , 2023, 43(1): [19] Chen Shuoshuo, Song Ningning, Zhang Shengmao, et al. Synergistic
92–103]. doi: 10.16078/j.tribology.2021183. tribological effect between polyisobutylene succinimide-modified
[ 8 ] Ueda M, Wong J S S, Spikes H. Influence of dumbbell base oil molybdenum oxide nanoparticle and zinc dialkyldithiophosphate for
blends on micropitting[J]. Tribology International, 2023, 185: reducing friction and wear of diamond-like carbon coating under
108578. doi: 10.1016/j.triboint.2023.108578. boundary lubrication[J]. Friction, 2023, 11(11): 2021–2035. doi: 10.
[ 9 ] Spikes H. The history and mechanisms of ZDDP[J]. Tribology 1007/s40544-022-0708-4.
Letters, 2004, 17(3): 469–489. doi: 10.1023/B:TRIL.0000044495. [20] Roy S, Jazaa Y, Sundararajan S. Investigating the micropitting and
26882.b5. wear performance of copper oxide and tungsten carbide nanofluids
[10] Lainé E, Olver A V, Beveridge T A. Effect of lubricants on under boundary lubrication[J]. Wear, 2019, 428–429: 55–63.
micropitting and wear[J]. Tribology International, 2008, 41(11): doi:10.1016/j.wear.2019.03.007.
1049–1055. doi: 10.1016/j.triboint.2008.03.016. [21] Lahouij I, Gould B, Demas N, et al. Inhibition of micro-pitting by
[11] Lainé E, Olver A V, Lekstrom M F, et al. The effect of a friction tribofilm-forming ZrO 2 nanocrystal lubricant additives: a micro-
modifier additive on micropitting[J]. Tribology Transactions, 2009, pitting rig and transmission electron microscope study[J]. Tribology
52(4): 526–533. doi: 10.1080/10402000902745507. Letters, 2022, 70(1): 13. doi: 10.1007/s11249-021-01555-2.
[12] Wu Jing, Yang Guangbin, Zhang Shengmao, et al. Preparation of [22] Ueda M, Wainwright B, Spikes H, et al. The effect of friction on
nanofluid of lanthanum borate nanosheets and investigation of its micropitting[J]. Wear, 2022, 488–489: 204130. doi:10.1016/j.wear.
tribological properties and tribomechanisms in different base oils[J]. 2021.204130.
Tribology Letters, 2022, 71(1): 1. doi: 10.1007/s11249-022-01676-2. [23] Fajdiga G, Flašker J, Glodež S, et al. Numerical modelling of micro-
[13] Gong Kuiliang, Lou Wenjing, Zhao Gaiqing, et al. MoS 2 pitting of gear teeth flanks[J]. Fatigue & Fracture of Engineering
nanoparticles grown on carbon nanomaterials for lubricating oil Materials & Structures, 2003, 26(12): 1135–1143. doi: 10.1046/j.
additives[J]. Friction, 2021, 9(4): 747–757. doi: 10.1007/s40544- 1460-2695.2003.00711.x.