Page 40 - 《摩擦学学报》2021年第2期
P. 40

第 2 期                    程焯, 等: 两种水基摩擦改性剂对轮轨黏着和损伤性能的影响                                       185

                   500                                                80
                        Maximum length                                      Maximum depth
                   450
                        Average length                                70    Average depth
                   400
                  Crack growth length/μm  300                        Crack growth depth/μm  50
                                                                      60
                   350
                   250
                                                                      40
                   200
                                                                      30
                   150
                                                                      20
                   100
                                                                      10
                    50
                     0                                                 0
                          Dry       FM1        FM2                           Dry       FM1       FM2
                             (a) Crack growth length                            (b) Crack growth depth

                                       Fig. 12  Crack growth length and depth of wheel specimen
                                              图 12    车轮试样裂纹扩展长度和深度


            FM2中水含量较高,较为稀疏,容易进入轮轨试样已                           皮、剥落坑和多层裂纹. 相比水基FM2,水基FM1作用
            有的疲劳裂纹中,引发“油楔效应”,加速裂纹扩展,进                          下轮轨黏着水平更优、轮轨磨损与损伤更加轻微.
            而导致较严重的滚动接触疲劳损伤(图11). 而FM1机                        参 考 文 献
            械稳定性能和涂敷性能均较好,能有效改善轮轨黏着
                                                               [  1  ]  Wang Yanpeng, Ding Haohao, Zou Qiang, et al. Research progress
            系数,同时轮轨材料磨损和损伤也较轻微.
                                                                   on  rolling  contact  fatigue  of  railway  wheel  treads[J].  Surface
                干态下未使用摩擦改性剂时,轮轨黏着(摩擦)系
                                                                   Technology, 2020, 49(5): 120–128 (in Chinese) [王延朋, 丁昊昊,
            数维持在0.35~0.45之间;使用摩擦改性剂时,黏着系                           邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术,
            数可调节至0.2~0.3范围内,其中,FM1在用量较大时                           2020,  49(5):  120–128].  doi:  10.16490/j.cnki.issn.1001-3660.2020.
            (大于8 μl),黏着系数能较长时间保持在0.2~0.3水平.                        05.015.
            干态下未使用摩擦改性剂时,轨磨损率为31.78和                           [  2  ]  Zou  Xiaochun,  Zhang  Jun,  Sun  Chuanxi,  et  al.  Simulation
            43.92 μg/m,轮轨表面形成明显的疲劳裂纹损伤;使用                          calculation  and  experimental  research  on  contact  between
                                                                   locomotive wheel tread and rail[J]. Tribology, 2020, 40(1): 128–134
            摩擦改性剂后,轮轨磨损率明显减小,其中,FM1在最
                                                                   (in Chinese) [邹小春, 张军, 孙传喜, 等. 机车车轮踏面与钢轨接触
            佳用量下(14 μl)可使轮轨磨损率降低至未使用时的
                                                                   的仿真计及试验研究[J]. 摩擦学学报, 2020, 40(1): 128–134]. doi:
            23%和41%,轮轨表面损伤轻微,仅出现轻微裂纹,裂
                                                                   10.16078/j.tribology.2019146.
            纹长度和深度明显减小.                                        [  3  ]  Y.  Zhu,  W.  J.  Wang,  R.  Lewis,  et  al  A  review  on  wear  between

                                                                   railway wheels and rails under environmental conditions[J]. Journal
            3    结论
                                                                   of  Tribology-Transactions  of  the  ASME,  2019,  141:  120801.  doi:
                                                                   10.1115/1.4044464.
                a. 加入水基FM后轮轨黏着系数由干态下0.35~
                                                               [  4  ]  Wang  W  J,  Lewis  R,  Evans  M  D,  et  al.  Influence  of  different
            0.45迅速下降至0.1左右,随循环次数的增加,黏着系
                                                                   application  of  lubricants  on  wear  and  pre-existing  rolling  contact
            数逐渐增加至干态水平;随涂敷量增加,水基FM的作
                                                                   fatigue  cracks  of  rail  materials[J].  Tribology  Letters,  2017,  65(2):
            用转数和最佳作用转数均呈现增加趋势,水基FM1最
                                                                   1–15. doi: 10.1007/s11249-017-0841-9.
            佳作用转数占比大于水基FM2,水基FM1和FM2最佳                         [  5  ]  C Hardwick, R Lewis, R Stock. The effects of friction management
            单次涂敷量为14和8 μl.                                         materials  on  rail  with  pre-existing  RCF  surface  damage[J].  Wear,
                b. 干态下轮轨试样磨损率分别为31.78和43.92 μg/m,                  2017, 384: 50–60.
            水基FM1介质下轮轨试样的磨损率明显降低,仅为干                           [  6  ]  N Zhang, Z W Tong, H B Yang, et al. New technology for friction
                                                                   control  of  wheel/rail  tread[J].  Synthetic  Lubricants,  2011,  38(2):
            态下的23%和41%;水基FM2介质下车轮试样的磨损
                                                                   16–18 (in Chinese) [张念, 童宗文, 杨洪滨, 等. 轮轨踏面摩擦控制
            率略高于干态,钢轨试样的磨损率为干态下的64%.
                                                                   新技术[J]. 合成润滑材料, 2011, 38(2): 16–18].
                c. 干态下轮轨试样出现起皮、剥落坑和多层裂
                                                               [  7  ]  R Stock, L Stanlake, C Hardwick, et al. Material concepts for top of
            纹;水基FM1介质下轮轨试样损伤最为轻微,出现微                               rail  friction  management-classification,  characterization  and
            裂纹和点蚀;水基FM2介质下轮轨试样出现大面积起                               application[J]. Wear, 2016, 366-367: 225–232. doi: 10.1016/j.wear.
   35   36   37   38   39   40   41   42   43   44   45