Page 40 - 《摩擦学学报》2021年第2期
P. 40
第 2 期 程焯, 等: 两种水基摩擦改性剂对轮轨黏着和损伤性能的影响 185
500 80
Maximum length Maximum depth
450
Average length 70 Average depth
400
Crack growth length/μm 300 Crack growth depth/μm 50
60
350
250
40
200
30
150
20
100
10
50
0 0
Dry FM1 FM2 Dry FM1 FM2
(a) Crack growth length (b) Crack growth depth
Fig. 12 Crack growth length and depth of wheel specimen
图 12 车轮试样裂纹扩展长度和深度
FM2中水含量较高,较为稀疏,容易进入轮轨试样已 皮、剥落坑和多层裂纹. 相比水基FM2,水基FM1作用
有的疲劳裂纹中,引发“油楔效应”,加速裂纹扩展,进 下轮轨黏着水平更优、轮轨磨损与损伤更加轻微.
而导致较严重的滚动接触疲劳损伤(图11). 而FM1机 参 考 文 献
械稳定性能和涂敷性能均较好,能有效改善轮轨黏着
[ 1 ] Wang Yanpeng, Ding Haohao, Zou Qiang, et al. Research progress
系数,同时轮轨材料磨损和损伤也较轻微.
on rolling contact fatigue of railway wheel treads[J]. Surface
干态下未使用摩擦改性剂时,轮轨黏着(摩擦)系
Technology, 2020, 49(5): 120–128 (in Chinese) [王延朋, 丁昊昊,
数维持在0.35~0.45之间;使用摩擦改性剂时,黏着系 邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术,
数可调节至0.2~0.3范围内,其中,FM1在用量较大时 2020, 49(5): 120–128]. doi: 10.16490/j.cnki.issn.1001-3660.2020.
(大于8 μl),黏着系数能较长时间保持在0.2~0.3水平. 05.015.
干态下未使用摩擦改性剂时,轨磨损率为31.78和 [ 2 ] Zou Xiaochun, Zhang Jun, Sun Chuanxi, et al. Simulation
43.92 μg/m,轮轨表面形成明显的疲劳裂纹损伤;使用 calculation and experimental research on contact between
locomotive wheel tread and rail[J]. Tribology, 2020, 40(1): 128–134
摩擦改性剂后,轮轨磨损率明显减小,其中,FM1在最
(in Chinese) [邹小春, 张军, 孙传喜, 等. 机车车轮踏面与钢轨接触
佳用量下(14 μl)可使轮轨磨损率降低至未使用时的
的仿真计及试验研究[J]. 摩擦学学报, 2020, 40(1): 128–134]. doi:
23%和41%,轮轨表面损伤轻微,仅出现轻微裂纹,裂
10.16078/j.tribology.2019146.
纹长度和深度明显减小. [ 3 ] Y. Zhu, W. J. Wang, R. Lewis, et al A review on wear between
railway wheels and rails under environmental conditions[J]. Journal
3 结论
of Tribology-Transactions of the ASME, 2019, 141: 120801. doi:
10.1115/1.4044464.
a. 加入水基FM后轮轨黏着系数由干态下0.35~
[ 4 ] Wang W J, Lewis R, Evans M D, et al. Influence of different
0.45迅速下降至0.1左右,随循环次数的增加,黏着系
application of lubricants on wear and pre-existing rolling contact
数逐渐增加至干态水平;随涂敷量增加,水基FM的作
fatigue cracks of rail materials[J]. Tribology Letters, 2017, 65(2):
用转数和最佳作用转数均呈现增加趋势,水基FM1最
1–15. doi: 10.1007/s11249-017-0841-9.
佳作用转数占比大于水基FM2,水基FM1和FM2最佳 [ 5 ] C Hardwick, R Lewis, R Stock. The effects of friction management
单次涂敷量为14和8 μl. materials on rail with pre-existing RCF surface damage[J]. Wear,
b. 干态下轮轨试样磨损率分别为31.78和43.92 μg/m, 2017, 384: 50–60.
水基FM1介质下轮轨试样的磨损率明显降低,仅为干 [ 6 ] N Zhang, Z W Tong, H B Yang, et al. New technology for friction
control of wheel/rail tread[J]. Synthetic Lubricants, 2011, 38(2):
态下的23%和41%;水基FM2介质下车轮试样的磨损
16–18 (in Chinese) [张念, 童宗文, 杨洪滨, 等. 轮轨踏面摩擦控制
率略高于干态,钢轨试样的磨损率为干态下的64%.
新技术[J]. 合成润滑材料, 2011, 38(2): 16–18].
c. 干态下轮轨试样出现起皮、剥落坑和多层裂
[ 7 ] R Stock, L Stanlake, C Hardwick, et al. Material concepts for top of
纹;水基FM1介质下轮轨试样损伤最为轻微,出现微 rail friction management-classification, characterization and
裂纹和点蚀;水基FM2介质下轮轨试样出现大面积起 application[J]. Wear, 2016, 366-367: 225–232. doi: 10.1016/j.wear.