Page 98 - 《摩擦学学报》2021年第1期
P. 98

第 41 卷     第 1 期                        摩  擦  学  学  报                                  Vol 41   No 1
            2021  年 1  月                                 Tribology                                    Jan, 2021


            DOI: 10.16078/j.tribology.2020038



                         高速列车制动闸片摩擦块形状对制动

                                       界面摩擦学行为的影响




                                                1,2
                                      1,2
                                                          1,2
                                                                              1,2*
                                                                    1,2
                               项载毓 , 范志勇 , 刘启昂 , 吴元科 , 莫继良 , 周仲荣                         1,2
                                   (1. 西南交通大学 机械工程学院 摩擦学研究所,四川 成都 610031;
                                   2. 轨道交通运维技术与装备四川省重点实验室,四川 成都 610031)
                摘   要: 在自行研制的高速列车制动缩比试验台上,对六边形、五边形和圆形摩擦块进行拖曳制动试验,研究摩擦块
                形状对高速列车制动界面摩擦学行为的影响,并采用有限元方法分析了不同摩擦块形状下制动界面接触行为的差
                异,探讨了摩擦块形状对接触压力分布及表面热分布的影响. 结果表明:摩擦块形状显著影响了制动界面磨损特性
                及接触压力分布,使得制动盘产生不同的温度分布现象. 在本试验条件下,六边形摩擦块表面磨损轻微,接触平台
                大小较为均匀,而五边形和圆形摩擦块表面呈现明显的犁沟和剥落特征,且大接触平台占比较高;六边形摩擦块与
                制动盘拖曳制动过程,界面具有较大的接触面积,使得接触压力分布较为均匀,表现出较好的接触行为,而五边形
                和圆形摩擦块的接触行为相对较为复杂,与之对摩的制动盘产生明显的热聚集现象.
                关键词: 高速列车; 摩擦块; 磨损; 图像分割; 热—机耦合
                中图分类号: TH117.1                  文献标志码: A                   文章编号: 1004-0595(2021)01–0095–10


                     Effect of Brake Pad Friction Block Shape on Tribological

                           Behavior of Brake Interface of High-Speed Train


                                                         1,2
                                                                      1,2
                                                                                  1,2*
                                             1,2
                               1,2
                  XIANG Zaiyu , FAN Zhiyong , LIU Qi’ang , WU Yuanke , MO Jiliang , ZHOU Zhongrong   1,2
                                (1. Tribology Research Institute, School of Mechanical Engineering, Southwest
                                         Jiaotong University, Sichuan Chengdu 610031, China
                           2. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of
                                         Sichuan Province, Sichuan Chengdu 610031, China)
                 Abstract: The dragging brake experiments using hexagon, pentagon and circular friction blocks were conducted on a
                 self-developed high-speed train braking shrinkage ratio dynamometer, to investigate the influence of friction block
                 shapes on the tribological behavior of brake interface of high-speed train. The finite element method was performed to
                 analyze the difference of the brake interface contact behavior under different friction block shapes, and the influences of
                 the friction block shapes on the contact pressure distribution and surface heat distribution were discussed. The results
                 showed that the friction block shape can significantly affect the wear characteristics and contact pressure distribution of
                 the brake interface, resulting in different temperature distribution of the disc. In this study, the surface of the hexagonal
                 friction block was slightly worn and the size of the contact platform was relatively uniform, while the pentagonal and
                 circular friction blocks showed visible ploughing and exfoliation, and the large contact platform accounted for a
                 relatively high proportion. For the hexagonal friction block, a larger contact area was formed during the drag braking


            Received 11 March 2020, revised 19 May 2020, accepted 26 May 2020, available online 28 January 2021.
            *Corresponding author. E-mail: jlmo@swjtu.cn, Tel: +86-28-87600601.
            The  project  was  supported  by  the  National  Natural  Science  Foundation  of  China  (51822508)  and  the  program  of  Science  and
            Technology Agency of Sichuan Province (20CXD0088).
            国家自然科学基金项目(51822508)和四川省青年科技创新研究团队项目(20CXD0088)资助.
   93   94   95   96   97   98   99   100   101   102   103