Page 127 - 《摩擦学学报》2021年第1期
P. 127
124 摩 擦 学 学 报 第 41 卷
锦波, 彭旭东, 等. 干气密封力学系统动态性能及其影响因素间的 characterization for supercritical CO 2 film-riding seals[C]//
交互作用分析[J]. 摩擦学学报, 2019, 39(3): 269–278]. doi: 10.16078/ Proceedings of ASME Turbo Expo 2018, Oslo, Norway, 2018.
j.tribology.2018144. [13] Yuan H M, Pidaparti S, Wolf M, et al. Experiment and numerical
[ 2 ] Shen Wei, Peng Xudong, Jiang Jinbo, et al. The influence of inertia study of supercritical carbon dioxide flow through labyrinth
effect on steady performance and dynamic characteristic of super seals[C]// The 4th International Symposium-Supercritical CO 2
high-speed tilted gas face seal[J]. Tribology, 2019, 39(4): 452– Power Cycles, Pittsburgh, USA, 2014.
462 (in Chinese) [沈伟, 彭旭东, 江锦波, 等. 惯性效应对超高速倾 [14] Yuan H M, Pidaparti S, Wolf M, et al. Numerical modeling of
斜端面气膜密封稳动态特性影响[J]. 摩擦学学报, 2019, 39(4): 452– supercritical carbon dioxide flow in see-through labyrinth seals[J].
462]. doi: 10.16078/j.tribology.2018165. Nuclear Engineering and Design, 2015, 293: 436–446. doi:
[ 3 ] Zhang Xuan, Peng Xudong, Jiang Jinbo, et al. The influence of 10.1016/j.nucengdes.2015.08.016.
shape and directionality of hole on leakage characteristics of hole- [15] Bidkar R A, Sevincer E, Jifeng W, et al. Low-leakage shaft-end
pattern damping seals[J]. Tribology, 2020, 40(1): 117–127 seals for utility-scale supercritical CO 2 turboexpanders[J]. ASME
(in Chinese) [张璇, 彭旭东, 江锦波, 等. 型孔形状和方向对孔型阻 Journal of Engineering for Gas Turbines and Power, 2017, 139(2):
尼密封泄漏特性影响[J]. 摩擦学学报, 2020, 40(1): 117–127]. doi: 022503. doi: 10.1115/1.4034258.
10.16078/j.tribology.2019119. [16] Li Z G, Fang Z, Li F, et al. Design and research of 450 MWe
[ 4 ] Stocker H L, Cox D M, Holle G F. Aerodynamic performance of supercritical carbon dioxide turbine shaft sealing scheme[C]//China
conventional and advanced design labyrinth seals with solidsmooth, Society of Engineering Thermophysics, Xi an, China, 2018(in
abradable and honeycomb lands[R]. Hampton: NASA, 1977. Chinese) [李志刚, 方志, 李冯, 等. 450 MWe超临界二氧化碳透平
[ 5 ] Chupp R E, Hendricks R C, Lattime S B, et al. Sealing in 轴封方案设计研究[C]. 中国工程热物理学会, 西安, 中国, 2018].
turbomachinery[J]. Journal of Propulsion and Power, 2006, 22(2): [17] Zhu Y M, Jiang Y Y. Numerical study of super-critical carbon
313–349. doi: 10.2514/1.17778. dioxide flow in stepped-staggered labyrinth seals[C]//The 6th
[ 6 ] Xiao Fang, Wang Yazhou, Diao Anna, et al. Structural optimization Supercritical CO 2 Power Cycle Symposium, Pittsburgh, USA, 2018.
design of labyrinth seal based on software FLUENT[J]. Fluid [18] Fairuz Z, Ingo J. The influence of real gas effects on the
Machinery, 2013, 42(9): 29–32 (in Chinese) [肖芳, 王亚洲, 刁安娜, performance of supercritical CO 2 dry gas seals[J]. International
等. 基于FLUENT技术迷宫密封的结构优化[J]. 流体机械, 2013, Journal of Tribology, 2016, 102: 333–347. doi: 10.1016/j.triboint.
42(9): 29–32]. doi: 10.3969/j.issn.1005-0329.2013.09.007. 2016.05.038.
[ 7 ] Feng Zhenping, Zhao Hang, Zhang Hanzhen, et al. Research [19] Du Q W, Gao K K, Zhang D, et al. Effects of grooved ring rotation
progress on supercritical carbon dioxide power cycle system and its and working fluid on the performance of dry gas seal[J].
power unit[J]. Thermal Turbine, 2016, 45(2): 85–94 (in Chinese) [丰 International Journal of Heat and Mass Transfer, 2018, 126:
镇平, 赵航, 张汉桢, 等. 超临界二氧化碳动力循环系统及关键部 1323–1332. doi: 10.1016/j.ijheatmasstransfer.2018.05.055.
件研究进展[J]. 热力透平, 2016, 45(2): 85–94]. [20] Shen Wei, Peng Xudong, Jiang Jinbo, et al. Analysis on real effect
[ 8 ] Wright S A, Radel R F, Vernon M E, et al. Operation and analysis of of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC
a supercritical CO 2 brayton cycle[R]. Sandia National Laboratories, Journal, 2019, 70(7): 2645–2659 (in Chinese) [沈伟, 彭旭东, 江锦
2010. 波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工
[ 9 ] Utamura M, Hasuike H, Yamamoto T. Demonstration test plant of 学报, 2019, 70(7): 2645–2659].
closed cycle gas turbine with supercritical CO 2 as working fluid[J]. [21] Zhang W F, Gu Q L, Yang J G, et al. Application of a novel
Strojarstvo, 2010, 52(4): 459–465. rotordynamic identification method for annular seals with arbitrary
[10] Cho J, Choi M, Baik Y, et al. Development of the turbomachinery elliptical orbits and eccentricities[J]. Journal of Engineering for Gas
for the supercritical carbon dioxide power cycle[J]. International Turbines and Power, 2019, 141(9): 091016. doi: 10.1115/1.4044121.
Journal of Energy Research, 2016, 40(5): 587–599. doi: [22] Ertas B H, Delgado A, Vannini G. Rotordynamic force coefficients
10.1002/er.3453. for three types of annular gas seals with inlet preswirl and high
[11] Li Zhigang, Yuan Tao, Fang Zhi, et al. A review on dynamic sealing differential pressure ratio[J]. Journal of Engineering for Gas
technology of supercritical carbon dioxide rotating Machinery[J]. Turbines and Power, 2012, 134(4): 042503. doi: 10.1115/1.4004537.
Thermal Turbine, 2019, 48(3): 166–174 (in Chinese) [李志刚, 袁韬, [23] San Andrés Luis, Yang Jing, Lu Xueliang. On the leakage, torque
方志, 等. 超临界二氧化碳旋转机械动密封技术研究进展[J]. 热力 and dynamic force coefficients of an air in oil (wet) annular seal: a
透平, 2019, 48(3): 166–174]. CFD analysis anchored to test data[C]//Turbomachinery Technical
[12] Trivedi D, Rahul A, Bidkar C W, et al. Film-stiffness Conference and Exposition, Oslo, Norway, 2018.