Page 91 - 《摩擦学学报》2020年第4期
P. 91
第 4 期 王鹏, 等: 核环境下的摩擦、磨损与润滑 501
doi: 10.1016/j.corsci.2018.02.035. [31] Liang Yu, Guo Lixiao, Deng Shaogang, et al. Estimation of graphite
[20] Lee C M, Jeong H Y, Yoon A, et al. Microstructural characteristics dust production in core of high temperature gas cooled reactor[J].
and different effects of 800~1200 ℃ preformed oxides on high- Radiation Protection, 2018, 38(5): 409–414 (in Chinese) [梁宇, 郭
temperature steam oxidation of a zirconium alloy cladding[J]. 丽潇, 邓少刚, 等. HTR-PM高温气冷示范堆堆芯石墨粉尘产生量
Journal of Alloys & Compounds, 2018, 753(15): 119–129. 估算[J]. 辐射防护, 2018, 38(5): 409–414].
[21] Ma Xuquan. Development and application of nuclear energy. (2nd [32] Shen Ke, Su Jiageng, Zhou Hongbo, et al. Abrasion behavior of
edition)[M]. Beijing: Chemical Industry Press, 2014(in Chinese) [马 graphite pebble in lifting pipe of pebble-bed HTR[J]. Nuclear
栩泉. 核能开发与应用(第2版)(21世纪可持续能源丛书)[M]. 北 Engineering and Design, 2015, 293: 395–402. doi:
京: 化学工业出版社, 2014]. 10.1016/j.nucengdes.2015.07.051.
[22] Deng Shaogang, Guo Lixiao, Liang Yu, et al. Effect of loads on [33] N J Hoffman, J J Droher. Friction and wear in sodium[C]. The
wear performance of graphite pebbles used in HTR-PM high international corrosion forum, 1974, Plamer House, Chicago.
temperature gas cooled reactor[J]. Radiation Protection, 2019, 39(6): [34] Wild E, Mack K J. Tribology in the core of a sodium-cooled fast
510–516 (in Chinese) [邓少刚, 郭丽潇, 梁宇, 等. 载荷对HTR- breeder reactor[J]. Wear, 1975, 34(3): 331–340. doi: 10.1016/0043-
PM高温气冷堆用石墨球摩损性能的影响[J]. 辐射防护, 2019, 1648(75)90101-5.
39(6): 510–516]. [35] Yoshida E, Furukawa T. Corrosion issues in sodium-cooled fast
[23] Sun Qi, Peng Wei, Yu Suyuan, et al. A review of HTGR graphite reactor (SFR) systems, Nuclear corrosion science and
dust transport research[J]. Nuclear Engineering and Design, 2020, engineering[M]. Woodhead Publishing, 2012: 773-806.
360: 110477. doi: 10.1016/j.nucengdes.2019.110477. [36] Kumar H, Ramakrishnan V, Albert S K, et al. High temperature
[24] Wu Yuanqiang, Diao Xingzhong, Zhou Huizhong, et al. Design and wear and friction behaviour of 15Cr-15Ni-2Mo titanium-modified
tests for the HTR-10 control rod system[J]. Nuclear Engineering and austenitic stainless steel in liquid sodium[J]. Wear, 2010, 270(1):
Design, 2002, 218(1-3): 147–154. doi: 10.1016/S0029- 1–4.
5493(02)00185-1. [37] Chen Yanjun, Wang Shunhua, Hao Yu, et al. Friction and Wear
[25] Luo Xiaowei, Li Xiaotian, Yu Suyuan. Nuclear graphite friction Behavior of CrN Coating on 316L Stainless Steel in Liquid Sodium
properties and the influence of friction properties on the pebble at Elevated Temperature[J]. Tribology International, 2020, 143:
bed[J]. Nuclear Engineering and Design, 2010, 240(10): 2674–2681. 106079. doi: 10.1016/j.triboint.2019.106079.
doi: 10.1016/j.nucengdes.2010.07.030. [38] Kumar H, Ramakrishnan V, Albert S K, et al. Short communication
[26] Luo Xiaowei, Yu Suyuan, Sheng Xuanyu, et al. Effect of on “ Self-welding susceptibility of NiCr-B hardfaced coating with
temperatures on the friction behavior of graphite used in a nuclear and without NiCr-B coating on 316LN stainless steel in flowing
reactor[J]. Tribology, 2004, 24(5): 402–405 (in Chinese) [雒晓卫, sodium at elevated temperature” [J]. Journal of Nuclear Materials,
于溯源, 盛选禹, 等. 温度对10MW高温气冷堆用石墨摩擦性能的 2017, 484: 141–147. doi: 10.1016/j.jnucmat.2016.11.032.
影响[J]. 摩擦学学报, 2004, 24(5): 402–405]. doi: 10.3321/j.issn:1004- [39] Johnson R N. Coatings for fast breeder reactor components[J]. Thin
0595.2004.05.004. Solid Films, 1984, 118: 31–47. doi: 10.1016/0040-6090(84)90104-4.
[27] Luo Xiaowei, Wang Xiaoxin, Shi li, et al. Nuclear graphite wear [40] Ju Pengfei, Zhang Dawei, Ji Li, et al. Progress in research of surface
properties and estimation of graphite dust production in HTR-10[J]. protection technology of materials in harsh environment[J]. China
Nuclear Engineering and Design, 2017, 315: 35–41. doi: Surface Engineering, 2019, 32(4): 1–16 (in Chinese) [鞠鹏飞, 张达
10.1016/j.nucengdes.2017.02.016. 威, 吉利, 等. 苛刻环境下材料表面防护技术的研究进展[J]. 中国
[28] Luo Xiaowei, Yu Suyuan, Sheng Xuanyu, et al. Temperature effect 表面工程, 2019, 32(4): 1–16].
on IG-11 graphite wear performance[J]. Nuclear Engineering and [41] Li Mengqi, Wang Weiguang, Li Cangxue, et al. Study on wear
Design, 2005, 235(21): 2261–2274. doi: 10.1016/j.nucengdes.2005.05. debris in water lubricated thrust bearing of nuclear main pump after
001. rig test[J]. Lubrication Engineering, 2016, 41(9): 113–120
[29] Barth T, Lecrivain G, Jayaraju S T, et al. Particle deposition and (in Chinese) [李梦启, 王伟光, 李藏雪, 等. 核主泵水润滑推力轴承
resuspension in gas-cooled reactors-Activity overview of the two 试验的磨损颗粒研究[J]. 润滑与密封, 2016, 41(9): 113–120]. doi:
European research projects Thins and Archer[J]. Nuclear 10.3969/j.issn.0254-0150.2016.09.021.
Engineering and Design, 2015, 290: 127–134. doi: [42] Tao Shaojia, Cong Guohui, Li Zhongshuan, et al. Research status
10.1016/j.nucengdes.2014.11.047. and development trend of water lubricated radial bearings with
[30] Hiruta M, Johnson G, Rostamian M, et al. Computational and nuclear main pump[J]. Pump Technology, 2015, (3): 14–16
experimental prediction of dust production in pebble bed reactors, (in Chinese) [陶邵佳, 丛国辉, 李中双, 等. 核主泵水润滑径向轴承
Part Ⅱ[J]. Nuclear Engineering and Design, 2013, 263: 509–514. 研究现状及发展趋势[J]. 水泵技术, 2015, (3): 14–16].
doi: 10.1016/j.nucengdes.2013.04.032. [43] Irving M, Tammisto J, Hodgson E R, et al. Irradiation and testing of