Page 39 - 《摩擦学学报》2020年第4期
P. 39

第 4 期                      李梁瑜, 等: 坡面道路上地面形貌对人体步进摩擦的影响                                       449


            对有效摩擦系数的影响高于地面形貌.                                      10.1080/10170660509509310.
                b. 随着坡度增加,人体行走姿态会为了保持平衡                        [12]  Li K W, Wu H H, Lin Y C. The effect of shoe sole tread groove
            而缩短步长以降低必要摩擦系数,步频则先增大后减                                depth on the friction coefficient with different tread groove widths,
                                                                   floors  and  contaminants[J].  Applied  Ergonomics,  2006,  37:
            小. 上坡启动时脚掌与路面的有效接触面积和下坡制
                                                                   743–748. doi: 10.1016/j.apergo.2005.11.007.
            动时脚跟的有效接触面积减小,导致有效摩擦系数降
                                                               [13]  Kim  I  J.  Identifying  shoe  wear  mechanisms  and  associated
            低,滑摔倾向增大.
                                                                   tribological  characteristics:  Importance  for  slip  resistance
            参 考 文 献                                                evaluation[J].  Wear,  2016,  360-361:  77–86.  doi:  10.1016/j.wear.
                                                                   2016.04.020.
            [  1  ]  Jia Lixiao, Zhang Yongzhen, Li Jian, et al. Major factors influencing
                                                               [14]  Shibata K, Warita I, Yamaguchi T, et al. Effect of groove width and
                 the  step  friction  coefficient  of  human[J].  Tribology,  2009,  29(6):
                                                                   depth and urethane coating on slip resistance of vinyl flooring sheet
                 627–633 (in Chinese) [贾利晓, 张永振, 李健, 等. 人体步进摩擦的
                                                                   in glycerol solution[J]. Tribology International, 2019, 35: 89–95.
                 主要影响因素[J]. 摩擦学学报, 2009, 29(6): 627–633]. doi: 10.3321/
                                                               [15]  Li  K  W,  Chang  W  R,  Lin  C  H,  et  al.  Relationship  between  the
                 j.issn:1004-0595.2009.06.022.
                                                                   measured friction coefficients of floors on a horizontal surface and
            [  2  ]  Norlander  A,  Miller  M,  Gard  G.  Perceived  risks  for  slipping  and
                                                                   on  a  10°  ramp[J].  International  Journal  of  Industrial  Ergonomics,
                 falling  at  work  during  wintertime  and  criteria  for  a  slip-resistant
                                                                   2006, 36: 705–711. doi: 10.1016/j.ergon.2006.05.002.
                 winter  shoe  among  Swedish  outdoor  workers[J].  Safety  Science,
                                                               [16]  McIntosh A, Beatty K, Dwan L, et al. Gait dynamics on an inclined
                 2015, 73: 52–61. doi: 10.1016/j.ssci.2014.11.009.
                                                                   walkway[J].  Journal  of  Biomechanics,  2006,  39:  2491–2502.  doi:
            [  3  ]  Takeshi Yamaguchi, Kazuo Hokkirigawa. Experimental analysis of
                                                                   10.1016/j.jbiomech.2005.07.025.
                 slip  potential  in  normal-style  walking  and  nanba-style  walking[J].
                                                               [17]  Zhang Y Z, Jia L X, Pang X J, et al. Effect of slope inclination on
                 Journal  of  Biomechanical  Science  and  Engineering,  2009,  4:
                                                                   step  friction  coefficient  of  human  being[J].  Science  China
                 468–479. doi: 10.1299/jbse.4.468.
                                                                   Technological Sciences, 2013, 56: 3001–3006. doi: 10.1007/s11431-
            [  4  ]  Derler  S,  Huber  R,  Kausch  F,  et  al.  Effectiveness,  durability  and
                                                                   013-5386-z.
                 wear  of  anti-slip  treatments  for  resilient  floor  coverings[J].  Safety
                                                               [18]  Chen  Huimin,  Zhang  Yongzhen,  Niu  Yongping,  et  al.  The
                 Science, 2015, 76: 12–20. doi: 10.1016/j.ssci.2015.02.002.
                                                                   mechanical principle of slipping when walking with different surface
            [  5  ]  Arian Iraqi, Rakié Cham, Mark Redfern, et al. Coefficient of friction
                                                                   conditions[J]. Chin Sci Bull, 2016, 61(23): 2629–2636 (in Chinese)
                 testing  parameters  influence  the  prediction  of  human  slips[J].
                                                                   [陈慧敏, 张永振, 牛永平, 等. 不同地面状态下行走时人体的滑摔
                 Applied  Ergonomics,  2018,  70:  118–126.  doi:  10.1016/j.apergo.
                                                                   机制[J]. 科学通报, 2016, 61(23): 2629–2636].
                 2018.02.017.
                                                               [19]  Zhang Y Z, Jia L X, Niu Y P, et al. Stepping behaviors based on
            [  6  ]  Burnfield J M, Powers, C M. Prediction of slips: an evaluation of
                                                                   tribological  and  dynamical  investigations[J].  Wear,  2013,  306:
                 utilized  coefficient  of  friction  and  available  slip  resistance[J].
                                                                   219–225. doi: 10.1016/j.wear.2013.03.031.
                 Ergonomics, 2006, 49: 982–995. doi: 10.1080/00140130600665687.
            [  7  ]  Hanson J P, Redfern M S, Mazumdar M. Predicting slips and falls  [20]  Redfern  M  S,  Dipasquale  J.  Biomechanics  of  descending  ramp[J].
                                                                   Gait & posture, 1997, 6: 119–125.
                 considering required and available friction[J]. Ergonomics, 1999, 42:
                                                               [21]  Kim  I  J,  Hsiao  H,  Simeonov  P.  Functional  levels  of  floor  surface
                 1619–1633. doi: 10.1080/001401399184712.
            [  8  ]  Chang  W  R.  The  effect  of  surface  roughness  on  dynamic  friction  roughness  for  the  prevention  of  slips  and  falls:  Clean-and-dry  and
                 between neolite and quarry tile[J]. Safety Science, 1998, 29: 89–105.  soapsuds-covered  wet  surfaces[J].  Applied  Ergonomics,  2013,  44:
                 doi: 10.1016/S0925-7535(98)00011-3.               58–64. doi: 10.1016/j.apergo.2012.04.010.
            [  9  ]  Chang W R. The effect of surface roughness and contaminant on the  [22]  Jia  Lixiao.  Research  on  the  probability  mechanism  and  control
                 dynamic friction of porcelain tile[J]. Applied Ergonomics, 2001, 32:  measures  on  slips  and  falls  of  human  body  while  walking[D].
                 173–184. doi: 10.1016/S0003-6870(00)00054-5.      Wuhan: Wuhan Research Institute of Materials Protection, 2013(in
            [10]  Jones T, Iraqi A, Beschorner K. Performance testing of work shoes  Chinese) [贾丽晓. 人体行走过程中的滑摔倾向及其机制与防控研
                 labeled as slip resistant[J]. Applied Ergonomics, 2018, 68: 304–312.  究[D]. 武汉: 武汉材料保护研究所, 2013].
                 doi: 10.1016/j.apergo.2017.12.008.            [23]  Yamaguchi T, Hatanaka S, Hokkirigawa K. Effect of step length and
            [11]  Li K W, Chen C J. Measurement of floor slipperiness using footwear  walking speed on traction coefficient and slip between shoe sole and
                 pads  with  various  tread  groove  width  design[J].  Journal  of  the  walkway[J].  Tribology  Online,  2008,  3:  59–64.  doi:  10.2474/trol.
                 Chinese  Institute  of  Industrial  Engineers,  2005,  22:  408–418.  doi:  3.59.
   34   35   36   37   38   39   40   41   42   43   44