Page 81 - 《高原气象》2025年第3期
P. 81
3 期 李 健等:基于CMA-GD模式的2 m气温逐小时预报误差订正方法分析 639
Cui B O, Toth Z, Zhu Y, et al, 2012. Bias correction for global en‐ Yu R C, Li J, Jia P Q, 2019. Developing of operational weather fore‐
semble forecast[J]. Weather and Forecasting, 27(2): 396-410. casting shaped by the “Triple-In” properties of numerical models
DOI: 10. 1175/WAF-D-11-00011. 1. [J]. WMO Bulletin, 68(2): 56-62.
Delle M L, Nipen T, Liu Y, et al, 2011. Kalman filter and analog 曾晓青, 薛峰, 姚莉, 等, 2019. 针对模式风场的格点预报订正方案
schemes to postprocess numerical weather predictions[J]. Month‐ 对比[J]. 应用气象学报, 30(1): 49-60. DOI: 10. 11898/1001-
ly Weather Review, 139(11): 3554-3570. DOI: 10. 1175/ 7313. 20190105. Zeng X Q, Xue F, Yao L, et al, 2019. Compar‐
2011MWR3653. 1. ative study of different error correction methods on model output
Feng X, Wu Y, Yang W, et al, 2023. Zoning evaluation of hourly pre‐ wind field[J]. Journal of Applied Meteorological Science, 30
cipitation in high-resolution regional numerical models over Hain‐ (1): 49-60. DOI: 10. 11898/1001-7313. 20190105.
an Island[J]. Journal of Tropical Meteorology, 29(4): 460-472. 陈伯民, 周坤, 信飞, 等, 2023. 与数值模式预报结合的冬季延伸期
DOI: 10. 3724/j. 1006-8775. 2023. 034. 强降温过程预测方法及业务化应用[J]. 高原气象, 42(2):
George G, Manolis A, 2002. A one-dimensional Kalman Filter for the 495-505. DOI: 10. 7522/j. issn. 1000-0534. 2022. 00007. Chen
correction of near surface temperature forecasts[J]. Meteorol, 9 B M, Zhou K, Xin F, et al, 2023. A predicting method of the
(4): 437-441. strong cooling process during winter with numerical model predic‐
Han L, Chen M X, Chen K K, et al, 2021. A deep learning method tion and its operational application[J]. Plateau Meteorology, 42
for bias correction of ECMWF 24-240 h forecasts[J]. Advances (2): 495-505. DOI: 10. 7522/j. issn. 1000-0534. 2022. 00007.
in Atmospheric Sciences, 38(9): 1444-1459. DOI: 10. 1007/ 陈康凯, 宋林烨, 杨璐, 等, 2020. 一种基于高斯模糊的复杂地形下
s00376-021-0215-y. 高分辨率三维插值方法的研究与试验应用[J]. 高原气象, 39
Isaksen L, Vasiljevic, Dee D, et al, 2012. Bias correction of aircraft (2): 367-377. DOI: 10. 7522/j. issn. 1000-0534. 2019. 00108.
data implemented in November 2011[D]. ECMWF Newsletter, Chen K K, Song L Y, Yang L, et al, 2020. Research and applica‐
No. 131: ECMWF, Reading, United Kingdom. tion of a three-dimensional interpolation method for high-resolu‐
Jhajharia D, Singh V P, 2011. Trends in temperature diurnal tempera‐ tion temperature in complex terrain based on Gaussian Fuzzy[J].
ture range and sunshine duration in Northeast India[J]. Interna‐ Plateau Meteorology, 39(2): 367-377. DOI: 10. 7522/j. issn.
tional Journal of Climatology, 31(9): 1353-1367. DOI: 10. 1000-0534. 2019. 00108.
1002/joc. 2164. 陈笑晨, 唐振飞, 陈锡宽, 等, 2022. 基于 CMIP6 的福建省极端气
Pelosi A, 2023. Performance of the Copernicus European Regional Re‐ 温预估[J]. 干旱气象, 40(3): 415-423. DOI: 10. 11755/j. issn.
analysis (CERRA) dataset as proxy of ground-based agrometeo‐ 1006-7639(2022)-03-0415. Chen X C, Tang Z F, Chen X K,
rological data [J]. Agricultural Water Management, 289: et al, 2022. Projection of extreme temperature in Fujian based on
108556. DOI: 10. 1016/j. agwat. 2023. 108556. CMIP6 output[J]. Journal of Arid Meteorology, 40(3): 415-
Prigent C, Jimenez C, Aires F, 2016. Toward “all weather” long re‐ 423. DOI: 10. 11755/j. issn. 1006-7639(2022)-03-0415.
cord, and real-time land surface temperature retrievals from mi‐ 陈新梅, 段旭, 王曼, 等, 2010. 适用于云南地区的地面资料同化方
crowave satellite observations[J]. Journal of Geophysical Re‐ 案设计及个例分析[J]. 高原气象, 29(4): 904-917. Chen X
search: Atmospheres, 121(10): 5699-5717. DOI: 10. 1002/ M, Duan X, Wang M, et al, 2010. Surface data assimilation
2015jd024402. scheme and case analysis suited for Yunnan region[J]. Plateau
Senior A, Heigold G, Ranzato M, et al, 2013. An empirical study of Meteorology, 29(4): 904-917.
learning rates in deep neural networks for speech recognition 陈昱文, 黄小猛, 李熠, 等, 2020. 基于 ECMWF 产品的站点气温预
[C]. 2013 IEEE International Conference on Acoustics, Speech 报集成学习误差订正[J]. 应用气象学报, 31(4): 494-503.
and Signal Processing. Vancouver B C, Canada: IEEE. 6724- DOI: 10. 11898/1001-7313. 20200411. Chen Y W, Huang X M,
6728. DOI: 10. 1109/ICASSP. 2013. 6638963. Li Y, et al, 2020. ensemble learning for bias correction of station
Stahl K, Moore R D, Floyer J A, et al, 2006. Comparison of ap‐ temperature forecast based on ECMWF products[J]. Journal of
proaches for spatial interpolation of daily air temperature in a Applied Meteorological Science, 31(4): 494-503. DOI: 10.
large region with complex topography and highly variable station 11898/1001-7313. 20200411.
density[J]. Agricultural and Forest Meteorology, 139(3-4): 丑纪范, 2007. 数值天气预报的创新之路——从初值问题到反问题
224-236. DOI: 10. 1016/j. agrformet. 2006. 07. 004. [J]. 气象学报, 65(5): 643-682. Chou J F, 2007. An innova‐
Xu P H, Cheng, Wang W, et al, 2023. Performance of the CMA-GD tive road to numerical weather prediction——from initial value
Model in predicting wind speed at wind farms in Hubei, China problem to inverse problem[J]. Acta Meteorologica Sinica, 65
[J]. Journal of Tropical Meteorology, 29(4): 473-481. DOI: (5): 643-682.
10. 3724/j. 1006-8775. 2023. 035. 代刊, 朱跃建, 毕宝贵, 2018. 集合模式定量降水预报的统计后处理
Yu E T, Ma J H, Sun J Q, et al, 2022. Developing a climate predic‐ 技术研究综述[J]. 气象学报, 76(4): 493-510. DOI: 10. 11676/
tion system over southwest China using the 8-km weather re‐ qxxb2018. 015. Dai K, Zhu Y J, Bi B G, 2018. The review of sta‐
search and forecasting (WRF) model: system design, model cali‐ tistical post--process technologies for quantitative precipitation
bration, and performance evaluation[J]. Weather and Forecast‐ forecast of ensemble prediction system[J]. Acta Meteorologica Si‐
ing, 37(9): 2691-2712. DOI: https: //doi. org/10 1175/WAF- nica, 76(4): 493-510. DOI: 10. 11676/qxxb2018. 015.
D-21-0188. 1. 冯良敏, 周秋雪, 曹萍萍, 等, 2023. 四川地区气温转折过程 2m 温