Page 44 - 《高原气象》2025年第3期
P. 44
高 原 气 象 44 卷
602
1308. DOI: 10. 7522/j. issn. 1000-0534. 2019. 000136. Su Y Q, DOI: 10. 13249/j. cnki. sgs. 2002. 01. 29.
Zhang Y, Song M H, et al, 2020. Evaluation of simulated perfor‐ 曾璇, 张兰慧, 白旭亮, 等, 2023. CLM5. 0 对干旱环境中高寒山区
mance of CLM4. 5 in alpine meadow over the Qinghai-Xizang 土壤温度模拟的适用性评估[J]. 干旱气象, 41(3): 368-379.
Plateau based on Measured soil properties[J]. Plateau Meteorolo‐ DOI: 10. 11755/j. issn. 1006-7639(2023)-03-0368. Zeng X,
gy, 39(6): 1295-1308. DOI: 10. 7522/j. issn. 1000-0534. 2019. Zhang L H, Bai X L, et al, 2023. Evaluation of CLM 5. 0 on
000136. simulating soil temperature in alpine mountainous area in arid en‐
王澄海, 董文杰, 韦志刚, 2002. 陆面模式中土壤冻融过程参数化 vironment[J]. Journal of Arid Meteorology, 41(3): 368-379.
研究进展[J]. 地球科学进展, 2002(1): 44-52. Wang C H, DOI: 10. 11755/j. issn. 1006-7639(2023)-03-0368.
Dong W J, Wei Z G, 2002. The development of study on the soil 张戈, 赖欣, 刘康, 2023. 黄河源区玛曲土壤冻融过程中地表水热
freezing-thaw process in land surface model[J]. Advances in 交换特征分析[J]. 高原气象, 42(3): 575-589. DOI: 10. 7522/
Earth Science, 2002(1): 44-52. j. issn. 1000-0534. 2022. 00083. Zhang G, Lai X, Liu K, 2023.
武月月, 文军, 王作亮, 等, 2022. 黄河源高寒草原下垫面土壤冻 Characteristics of surface water and heat exchange during soil
融过程中陆-气间的水热交换特征分析[J]. 高原气象, 41 freezing and thawing of Maqu Station in the source area of the
(1): 132-142. DOI: 10. 7522/j. issn. 1000-0534. 2021. 00014. Yellow River[J]. Plateau Meteorology, 42(3): 575-589. DOI:
Wu Y Y, Wen J, Wang Z L, et al, 2022. The characteristics of 10. 7522/j. issn. 1000-0534. 2022. 00083.
land-atmospheric water and heat exchange during soil freezing- 张寅生, 马颖钊, 张艳林, 等, 2015. 青藏高原坡面尺度冻融循环与
thawing process over the underlying surface of the alpine grass‐ 水热条件空间分布[J]. 科学通报, 60(7): 664-673. DOI: 10.
land in the source region of the Yellow River[J]. Plateau Meteo‐ 1360/N972014-00313. Zhang Y S, Ma Y Z, Zhang U L, et al,
rology, 41(1): 132-142. DOI: 10. 7522/j. issn. 1000-0534. 2015. Hillslope patterns in thaw-freeze cycle and hydrothermal re‐
2021. 00014. gimes on Tibetan Plateau[J]. Chinese Science Bulletin, 60(7):
闫旭春, 吴晓东, 吕雅琼, 等, 2023. CLM5. 0 对阿拉斯加多年冻土 664-673. DOI: 10. 1360/N972014-00313.
区土壤温度和碳循环模拟的适用性评估[J]. 冰川冻土, 45 张子涵, 王学佳, 杨梅学, 等, 2023. 黄河上游水源涵养区近 60 年
(3): 902-914. DOI: 10. 7522/j. issn. 1000-0240. 2023. 0068. 关键气候要素的时空变化[J]. 高原气象, 42(6): 1372-1385.
Yan X C, Wu X D, Lü Y Q, et al, 2023. Applicability evalua‐ DOI: 10. 7522/j. issn. 1000-0534. 2023. 00011. Zhang Z H,
tion of CLM5. 0 in simulating soil temperature and carbon cycle Wang X J, Yang M X, et al, 2023. Spatio-temporal changes of
in Alaskan permafrost region[J]. Journal of Glaciology and Geoc‐ key climatic elements in the Upper Yellow River Water Conserva‐
ryology, 45(3): 902-914. DOI: 10. 7522/j. issn. 1000-0240. tion Area in recent 60 years[J]. Plateau Meteorology, 42(6):
2023. 0068. 1372-1385. DOI: 10. 7522/j. issn. 1000-0534. 2023. 00011.
杨梅学, 姚檀栋, 何元庆, 等, 2002. 藏北高原地气之间的水分循环 周余华, 叶伯生, 胡和平, 2005. 土壤冻融条件下的陆面过程研究
[J]. 地 理 科 学 , 22(1): 29-33. DOI: 10. 13249/j. cnki. sgs. 综述[J]. 水科学进展, 16(6): 887-891. Zhou Y H, Ye B S, Hu
2002. 01. 29. Yang M X, Yao T D, He Y Q, et al, 2002. The wa‐ H P, 2005. Review of the study on land surface process in soil
ter cycles between land surface and atmosphere in northern part of freezing and thawing[J]. Advances in Water Science, 16(6):
Tibetan Plateau[J]. Scientia Geographica Sinica, 22(1): 29-33. 887-891.