Page 43 - 《高原气象》2025年第3期
P. 43
3 期 包逸群等:CLM5.0模式加密土壤分层方案对黄河源区玛多站土壤温湿度的模拟 601
陈海山, 杜新观, 孙悦, 2022. 陆面过程与天气研究[J]. 地学前缘, Research on the environmental effect caused by climate change in
29(5): 382-400. DOI: 10. 13745/j. esf. sf. 2021. 9. 59. Chen H the source region of the Yellow River[J]. Journal of Glaciology
S, Du X G, Sun Y, 2022. Land surface processes and weather re‐ and Geocryology, 35(5): 1183-1192. DOI: 10. 7522/j. issn.
search-a review[J]. Earth Science Frontiers, 29(5): 382-400. 1000-0240. 2013. 0133.
DOI: 10. 13745/j. esf. sf. 2021. 9. 59. 刘子莎, 吕世华, 胥朋飞, 等, 2024. BCC_AVIM 陆面模式不同土壤
陈琼, 周强, 张海峰, 等, 2010. 三江源地区基于植被生长季的 ND‐ 垂直离散化方案对土壤水热输送的数值模拟[J]. 高原气象, 43
VI 对气候因子响应的差异性研究[J]. 生态环境学报, 19(6): (2): 303-317. DOI: 10. 7522/j. issn. 1000-0534. 2023. 00063.
1284-1289. DOI: 10. 16258/j. cnki. 1674-5906(2010)06-1284- Liu Z S, Lü S H, Xu P F, et al, 2024. Numerical simulation of
06. Chen Q, Zhou Q, Zhang H F, et al, 2010. Spatial disparity soil water and heat transport with different vertical discretization
of NDVI response in vegetation growing season to climate change schemes BCC_AVIM land surface model[J]. Plateau Meteorolo‐
in the Three-River Headwaters Region[J]. Ecology and Environ‐ gy, 43(2): 303-317. DOI: 10. 7522/j. issn. 1000-0534. 2023.
ment, 19(6): 1284-1289. DOI: 10. 16258/j. cnki. 1674-5906 00063.
(2010)06-1284-06. 柳媛普, 吕世华, 李锁锁, 等, 2007. 近几十年黄河源区气候与植被
戴永久, 2020. 陆面过程模式研发中的问题[J]. 大气科学学报, 43 变化及相关分析[J]. 高原气象, 26(5): 1045-1051. Liu Y P,
(1): 33-38. DOI: 10. 13878/j. cnki. dqkxxb. 20200103006. Dai Lü S H, Li S S, et al, 2007. Changes and relation analyses of cli‐
Y J, 2020. Issues in research and development of land surface mate and vegetation in the source region of Yellow River in recent
process model[J]. Transactions of Atmospheric Sciences, 43 several decade years[J]. Plateau Meteorology, 26(5): 1045-
(1): 33-38. DOI: 10. 13878/j. cnki. dqkxxb. 20200103006. 1051.
戴永久, 曾庆存, 1996. 陆面过程研究[J]. 水科学进展, 7(S1): 40- 罗琪, 文军, 王欣, 等, 2017. 黄河源高寒湿地-大气间水热和碳交
53. Dai Y J, Zeng Q C, 1996. Study on Land Surface Process 换通量日变化特征的观测分析[J]. 高原气象, 36(3): 667-
[J]. Advances in Water Science, 7(S1): 40-53. 674. DOI: 10. 7522/j. issn. 1000-0534. 2016. 00062. Luo Q,
付春伟, 胡泽勇, 卢珊, 等, 2022. 基于 CLM4. 5模式的季节冻土区 Wen J, Wang X, et al, 2017. Analysis of the diurnal characteris‐
土壤参数化方案的模拟研究[J]. 高原气象, 41(1): 93-106. tics of water and heat & CO exchanges at the alpine wetland in
2
DOI: 10. 7522/j. issn. 1000-0534. 2021. 00050. Fu C W, Hu Z the source region of the Yellow River[J]. Plateau Meteorology,
Y, Lu S, et al, 2022. A simulation study on soil parameterization 36(3): 667-674. DOI: 10. 7522/j. issn. 1000-0534. 2016.
scheme of seasonally frozen ground regions based on CLM4. 5 00062.
[J]. Plateau Meteorology, 41(1): 93-106. DOI: 10. 7522/j. 马柱国, 2005. 黄河径流量的历史演变规律及成因[J]. 地球物理学
issn. 1000-0534. 2021. 00050. 报, 48(6): 1270-1275. Ma Z G, 2005. Historical regular pat‐
洪涛, 梁四海, 孙禹, 等, 2013. 黄河源区多年冻土热传导系数影响 terns of the discharge in the Yellow River and the cause of their
因素分析及其在活动层厚度模拟中的应用[J]. 冰川冻土, 35 formation[J]. Chinese Journal of Geophysics, 48(6): 1270-
(4): 824-833. DOI: 10. 7522/j. issn. 1000-0240. 2013. 0093. 1275.
Hong T, Liang S H, Sun Y, et al, 2013. Analyzing the factors 马柱国, 符淙斌, 周天军, 等, 2020. 黄河流域气候与水文变化的现
that impact on the heat conductivity coefficient and applying them 状 及 思 考[J]. 中 国 科 学 院 院 刊 , 35(1): 52-60. DOI: 10.
to simulate the depth of permafrost active layer in the headwaters 16418/j. issn. 1000-3045. 20191223002. Ma Z G, Fu C B, Zhou
of the Yellow River[J]. Journal of Glaciology and Geocryology, T J, et al, 2020. Status and ponder of climate and hydrology
35(4): 824-833. DOI: 10. 7522/j. issn. 1000-0240. 2013. 0093. changes in the Yellow River Basin[J]. Bulletin of Chinese Acade‐
金会军, 王绍令, 吕兰芝, 等, 2010. 黄河源区冻土特征研究[J]. 冰 my of Sciences, 35(1): 52-60. DOI: 10. 16418/j. issn. 1000-
川冻土, 32(1): 10-17. DOI: 10. 7522/j. issn. 1000-0240. 2010. 3045. 20191223002.
0002. Jin H J, Wang S L, Lü L Z, et al, 2010. Research on the 屈长良, 2019. 1959-2018 年黄河源头玛多地区气温变化特征及趋
characteristics of frozen soil in the source region of the Yellow 势分析[J]. 青海气象(2): 25-29. Qu C L, 2019. Analysis of
River[J]. Journal of Glaciology and Geocryology, 32(1): 10- temperature changes and trends in the Maduo region at the source
17. DOI: 10. 7522/j. issn. 1000-0240. 2010. 0002. of the Yellow River from 1959 to 2018[J]. Journal of Qinghai
李静, 盛煜, 吴吉春, 等, 2016. 黄河源区冻土分布制图及其热稳定 Meteorology(2): 25-29.
性特征模拟[J]. 地理科学, 36(4): 588-596. DOI: 10. 13249/j. 宋耀明, 范轶, 马天娇, 2014. 陆面过程模式CLM4. 5在半干旱区退
cnki. sgs. 2016. 04. 013. Li J, Sheng Y, Wu J C, et al, 2016. 化草原站的模拟性能评估[J]. 大气科学学报, 37(6): 794-
Mapping Frozen Soil Distribution and Modeling Permafrost Sta‐ 803. DOI: 10. 13878/j. cnki. dqkxxb. 20140105001. Song Y M,
bility in the Source Area of the Yellow River[J]. Scientia Geo‐ Fan Y, Ma T J, 2014. Evaluation of simulation performance of
graphica Sinica, 36(4): 588-596. DOI: 10. 13249/j. cnki. sgs. land surface model NCAR_CLM4. 5 at a degrated grassland sta‐
2016. 04. 013. tion in semi-arid area[J]. Transactions of Atmospheric Sciences,
李开明, 李绚, 王翠云, 等, 2013. 黄河源区气候变化的环境效应研 37(6): 794-803. DOI: 10. 13878/j. cnki. dqkxxb. 20140105001.
究[J]. 冰 川 冻 土 , 35(5): 1183-1192. DOI: 10. 7522/j. issn. 苏有琦, 张宇, 宋敏红, 等, 2020. 基于实测土壤属性 CLM4. 5对青
1000-0240. 2013. 0133. Li K M, Li X, Wang C Y, et al, 2013. 藏高原高寒草甸模拟性能的评估[J]. 高原气象, 39(6): 1295-