Page 43 - 《高原气象》2025年第3期
P. 43

3 期             包逸群等:CLM5.0模式加密土壤分层方案对黄河源区玛多站土壤温湿度的模拟                                      601
               陈海山, 杜新观, 孙悦, 2022. 陆面过程与天气研究[J]. 地学前缘,              Research on the environmental effect caused by climate change in
                  29(5): 382-400. DOI: 10. 13745/j. esf. sf. 2021. 9. 59. Chen H   the source region of the Yellow River[J]. Journal of Glaciology
                  S, Du X G, Sun Y, 2022. Land surface processes and weather re‐  and  Geocryology,  35(5):  1183-1192. DOI:  10. 7522/j. issn.
                  search-a review[J]. Earth Science Frontiers, 29(5): 382-400.  1000-0240. 2013. 0133.
                  DOI: 10. 13745/j. esf. sf. 2021. 9. 59.        刘子莎, 吕世华, 胥朋飞, 等, 2024. BCC_AVIM 陆面模式不同土壤
               陈琼, 周强, 张海峰, 等, 2010. 三江源地区基于植被生长季的 ND‐              垂直离散化方案对土壤水热输送的数值模拟[J]. 高原气象, 43
                  VI 对气候因子响应的差异性研究[J]. 生态环境学报, 19(6):               (2): 303-317. DOI: 10. 7522/j. issn. 1000-0534. 2023. 00063.
                  1284-1289. DOI: 10. 16258/j. cnki. 1674-5906(2010)06-1284-  Liu Z S, Lü S H, Xu P F, et al, 2024. Numerical simulation of
                  06. Chen Q, Zhou Q, Zhang H F, et al, 2010. Spatial disparity   soil water and heat transport with different vertical discretization
                  of NDVI response in vegetation growing season to climate change   schemes BCC_AVIM land surface model[J]. Plateau Meteorolo‐
                  in the Three-River Headwaters Region[J]. Ecology and Environ‐  gy, 43(2): 303-317. DOI: 10. 7522/j. issn. 1000-0534. 2023.
                  ment,  19(6):  1284-1289. DOI:  10. 16258/j. cnki. 1674-5906  00063.
                 (2010)06-1284-06.                               柳媛普, 吕世华, 李锁锁, 等, 2007. 近几十年黄河源区气候与植被
               戴永久, 2020. 陆面过程模式研发中的问题[J]. 大气科学学报, 43               变化及相关分析[J]. 高原气象, 26(5): 1045-1051. Liu Y P,
                 (1): 33-38. DOI: 10. 13878/j. cnki. dqkxxb. 20200103006. Dai   Lü S H, Li S S, et al, 2007. Changes and relation analyses of cli‐
                  Y  J,  2020. Issues  in  research  and  development  of  land  surface   mate and vegetation in the source region of Yellow River in recent
                  process  model[J]. Transactions  of  Atmospheric  Sciences,  43  several  decade  years[J]. Plateau  Meteorology,  26(5):  1045-
                 (1): 33-38. DOI: 10.  13878/j. cnki. dqkxxb. 20200103006.  1051.
               戴永久, 曾庆存, 1996. 陆面过程研究[J]. 水科学进展, 7(S1): 40-      罗琪, 文军, 王欣, 等, 2017. 黄河源高寒湿地-大气间水热和碳交
                  53. Dai Y  J,  Zeng  Q  C,  1996. Study  on  Land  Surface  Process  换通量日变化特征的观测分析[J]. 高原气象, 36(3): 667-
                 [J]. Advances in Water Science, 7(S1): 40-53.      674. DOI:  10. 7522/j. issn. 1000-0534. 2016. 00062. Luo  Q,
               付春伟, 胡泽勇, 卢珊, 等, 2022. 基于 CLM4. 5模式的季节冻土区            Wen J, Wang X, et al, 2017. Analysis of the diurnal characteris‐
                  土壤参数化方案的模拟研究[J]. 高原气象, 41(1): 93-106.             tics of water and heat & CO  exchanges at the alpine wetland in
                                                                                       2
                  DOI: 10. 7522/j. issn. 1000-0534. 2021. 00050. Fu C W, Hu Z   the source region of the Yellow River[J]. Plateau Meteorology,
                  Y, Lu S, et al, 2022. A simulation study on soil parameterization   36(3):  667-674. DOI:  10. 7522/j. issn. 1000-0534. 2016.
                  scheme  of  seasonally  frozen  ground  regions  based  on  CLM4. 5  00062.
                 [J]. Plateau  Meteorology,  41(1):  93-106. DOI:  10. 7522/j.  马柱国, 2005. 黄河径流量的历史演变规律及成因[J]. 地球物理学
                  issn. 1000-0534. 2021. 00050.                     报, 48(6): 1270-1275. Ma Z G, 2005. Historical regular pat‐
               洪涛, 梁四海, 孙禹, 等, 2013. 黄河源区多年冻土热传导系数影响                terns of the discharge in the Yellow River and the cause of their
                  因素分析及其在活动层厚度模拟中的应用[J]. 冰川冻土, 35                   formation[J]. Chinese  Journal  of  Geophysics,  48(6):  1270-
                 (4):  824-833. DOI:  10. 7522/j. issn. 1000-0240. 2013. 0093.  1275.
                  Hong T, Liang S H, Sun Y, et al, 2013. Analyzing the factors   马柱国, 符淙斌, 周天军, 等, 2020. 黄河流域气候与水文变化的现
                  that impact on the heat conductivity coefficient and applying them   状 及 思 考[J]. 中 国 科 学 院 院 刊 ,  35(1):  52-60. DOI:  10.
                  to simulate the depth of permafrost active layer in the headwaters   16418/j. issn. 1000-3045. 20191223002. Ma Z G, Fu C B, Zhou
                  of the Yellow River[J]. Journal of Glaciology and Geocryology,   T  J,  et  al,  2020. Status  and  ponder  of  climate  and  hydrology
                  35(4): 824-833. DOI: 10. 7522/j. issn. 1000-0240. 2013. 0093.  changes in the Yellow River Basin[J]. Bulletin of Chinese Acade‐
               金会军, 王绍令, 吕兰芝, 等, 2010. 黄河源区冻土特征研究[J]. 冰             my  of  Sciences,  35(1):  52-60. DOI:  10. 16418/j. issn. 1000-
                  川冻土, 32(1): 10-17. DOI: 10. 7522/j. issn. 1000-0240. 2010.  3045. 20191223002.
                  0002. Jin H J, Wang S L, Lü L Z, et al, 2010. Research on the   屈长良, 2019. 1959-2018 年黄河源头玛多地区气温变化特征及趋
                  characteristics  of  frozen  soil  in  the  source  region  of  the Yellow   势分析[J]. 青海气象(2): 25-29. Qu C L, 2019. Analysis of
                  River[J]. Journal of Glaciology and Geocryology, 32(1): 10-  temperature changes and trends in the Maduo region at the source
                  17. DOI: 10. 7522/j. issn. 1000-0240. 2010. 0002.  of  the Yellow  River  from  1959  to  2018[J]. Journal  of  Qinghai
               李静, 盛煜, 吴吉春, 等, 2016. 黄河源区冻土分布制图及其热稳定                Meteorology(2): 25-29.
                  性特征模拟[J]. 地理科学, 36(4): 588-596. DOI: 10. 13249/j.  宋耀明, 范轶, 马天娇, 2014. 陆面过程模式CLM4. 5在半干旱区退
                  cnki. sgs. 2016. 04. 013. Li  J,  Sheng Y, Wu  J  C,  et  al,  2016.  化草原站的模拟性能评估[J]. 大气科学学报, 37(6): 794-
                  Mapping Frozen Soil Distribution and Modeling Permafrost Sta‐  803. DOI: 10. 13878/j. cnki. dqkxxb. 20140105001. Song Y M,
                  bility  in  the  Source Area  of  the Yellow  River[J]. Scientia  Geo‐  Fan Y, Ma T J, 2014. Evaluation of simulation performance of
                  graphica Sinica, 36(4): 588-596. DOI: 10. 13249/j. cnki. sgs.  land surface model NCAR_CLM4. 5 at a degrated grassland sta‐
                  2016. 04. 013.                                    tion in semi-arid area[J]. Transactions of Atmospheric Sciences,
               李开明, 李绚, 王翠云, 等, 2013. 黄河源区气候变化的环境效应研                37(6): 794-803. DOI: 10. 13878/j. cnki. dqkxxb. 20140105001.
                  究[J]. 冰 川 冻 土 , 35(5): 1183-1192. DOI: 10. 7522/j. issn.  苏有琦, 张宇, 宋敏红, 等, 2020. 基于实测土壤属性 CLM4. 5对青
                  1000-0240. 2013. 0133. Li K M, Li X, Wang C Y, et al, 2013.  藏高原高寒草甸模拟性能的评估[J]. 高原气象, 39(6): 1295-
   38   39   40   41   42   43   44   45   46   47   48