Page 17 - 《高原气象》2025年第3期
P. 17
3 期 杨发利等:BCC-CSM模式土壤分层及其冻融砾石参数化集成方案对青藏高原土壤水热输送的模拟研究 575
土壤湿度冬季的模拟效果优于夏季, 土壤浅层的模 Martinez J E, Duchon C E, Crosson W L, 2001. Effect of the number
拟效果优于深层。 of soil layers on a modeled surface water budget[J]. Water Re‐
sources Research, 37(2): 367-377. DOI: 10. 1029/2000WR90
(5) 从土壤温度和湿度的模拟结果可以得到,
0298.
随着土壤分层的加密, 模拟值与 CRA 数据之间的
Mehuys G R, Stolzy L H, Letey J, et al, 1975. Effect of stones on the
相关系数提高, 表明模拟结果与 CRA 数据的一致 hydraulic conductivity of relatively dry desert soils[J]. Soil Sci‐
性增强, 模式在青藏高原地区对于土壤水热的模拟 ence Society of America Journal, 39(1): 37-42.
效果得到增强。 Niu G Y, Yang Z L, 2006. Effects of frozen soil on snowmelt runoff
and soil water storage at a continental scale[J]. Journal of Hydro‐
总体而言, 参数化集成方案对于模式模拟青藏
meteorology, 7(5): 937-952. DOI: 10. 1175/JHM538. 1.
高原土壤水热具有很好的提升效果, 土壤分层方案
Ohtsuka T, Hirota M, Zhang X, et al, 2008. Soil organic carbon
的加密对于提高青藏高原地区土壤温度和湿度模 pools in alpine to nival zones along an altitudinal gradient (4400-
拟的准确性是有益的, 尤其是在高原的中部和西部 5300 m)on the Tibetan Plateau[J]. Polar Science, 2(4):
地区, 30层参数化集成方案的模拟效果最佳, 20层 277-285.
次之。本文的研究成果仍受到相关再分析数据适 Oleson K W, Niu G Y, Yang Z L, et al, 2008. Improvements to the
Community Land Model and their impact on the hydrological cy‐
用性的影响, 由于观测资料相对缺乏, 本研究中使
cle[J]. Journal of Geophysical Research: Solid Earth, 113(G1):
用的模式初始条件和边界条件主要来源于再分析
G01021-1-G01021-26-0. DOI: 10. 1029/2007JG000563.
数据的插值, 其精确度受到限制。同时, CRA 再分 Onwuka B, Mang B, 2018. Effects of soil temperature on some soil
析资料可能也存在一定的不确定性。后续研究期 properties and plant growth[J]. Adv. Plants Agric. Res, 8(1):
望获取更丰富的观测资料, 有望提高模拟的准确 34-37.
Yang K, Wang C, Li S, 2018. Improved simulation of frozen‐thawing
性, 并使得对比分析结果更为精确。
process in land surface model(CLM4. 5)[J]. Journal of Geophys‐
参考文献(References): ical Research: Atmospheres, 123(23): 238-258. DOI: 10. 1029/
2017JD028260.
Brouwer J, Anderson H, 2000. Water holding capacity of ironstone Yang L, Wei W, Chen L, et al, 2012. Spatial variations of shallow
gravel in a typic plinthoxeralf in southeast Australia[J]. Soil Sci‐ and deep soil moisture in the semi-arid Loess Plateau, China[J].
ence Society of America Journal, 64(5): 1603-1608. DOI: Hydrology and Earth System Sciences, 16(9): 3199-3217.
10. 2136/sssaj2000. 6451603x. DOI: 10. 5194/hess-16-3199-2012.
Cheng G, Wu T, 2007. Responses of permafrost to climate change Zhang X, Sun S F, Xue Y, 2007. Development and testing of a fro‐
and their environmental significance, Qinghai-Tibet Plateau[J]. zen soil parameterization for cold region studies[J]. Journal of
Journal of Geophysical Research: Earth Surface, 112(F2). DOI: Hydrometeorology, 8(4): 690-701. DOI: 10. 1175/JHM605. 1.
10. 1029/2006JF000631. 程攀, 吕世华, 孙虹雨, 等, 2023. 土壤砾石参数化对高原涡形成发
De Rosnay P, Bruen M, Polcher J, 2000. Sensitivity of surface fluxes 展作用的敏感性分析[J]. 高原气象, 42(3): 632-645. DOI:
to the number of layers in the soil model used in GCMs[J]. Geo‐ 10. 7522/j. issn. 1000-0534. 2022. 00075. Chen P, Lü S H, Sun
physical Research Letters, 27(20): 3329-3332. DOI: 10. 1029/ H Y, et al, 2023. Sensitivity analysis of soil gravel parameteriza‐
2000GL011574. tion on the formation and development of Plateau Vortices[J].
Heise E, Lange M, Ritter B, et al, 2003. Improvement and validation Plateau Meteorology, 42(3): 632-645. DOI: 10. 7522/j. issn.
of the multi-layer soil model[J]. Cosmo Newsletter, 3(1): 1000-0534. 2022. 00075.
198-203. 胡桃, 吕世华, 常燕, 等, 2022. CMIP6模式对青藏高原多年冻土变
Kozlowski T, 2009. Some factors affecting supercooling and the equi‐ 化的分析预估[J]. 高原气象, 41(2): 363-375. DOI: 10. 7522/
librium freezing point in soil-water systems[J]. Cold Regions Sci‐ j. issn. 1000-0534. 2022. 00009. Hu T, Lü S H, Chang Y, et al,
ence and Technology, 59(1): 25-33. DOI: 10. 1016/j. coldre‐ 2022. Analysis and prediction of permafrost changes in the Qing‐
gions. 2009. 05. 009. hai-Tibet Plateau using CMIP6 models[J]. Plateau Meteorology,
Kurylyk B L, Watanabe K, 2013. The mathematical representation of 41(2): 363-375. DOI: 10. 7522/j. issn. 1000-0534. 2022.
freezing and thawing processes in variably-saturated, non-de‐ 00009.
formable soils[J]. Advances in Water Resources, 60: 160-177. 解晋, 余晔, 刘川, 等, 2018. 青藏高原地表感热通量变化特征及其
DOI: 10. 1016/j. advwatres. 2013. 07. 016. 对气候变化的响应[J]. 高原气象, 37(1): 28-42. DOI: 10.
Li S X, Nan Z T, Zhao L, 2002. Impact of soil freezing and thawing 7522/j. issn. 1000-0534. 2017. 00019. Xie J, Yu Y, Liu C, et al,
process on thermal exchange between atmosphere and ground sur‐ 2018. Variation characteristics of surface sensible heat flux over
face[J]. Journal of Glaciology and Geocryology, 24(5): 506– the Qinghai-Tibet Plateau and its response to climate change[J].
511. DOI: 10. 7522/j. issn. 1000-0240. 2002. 0087. Plateau Meteorology, 37(1): 28-42. DOI: 10. 7522/j. issn.