Page 145 - 《高原气象》2025年第3期
P. 145
3 期 张淏元等:基于深度学习提升中国西南地区夏季降水短期气候预测的研究 703
[J]. Atmospheric Research, 94(4): 512-533. DOI: 10. 1016/j. Zhang R H, 2001. Relations of water vapor transport from Indian mon‐
atmosres. 2009. 08. 017. soon with that over East Asia and the summer rainfall in China
Qian W, Kang H S, Lee D K, 2002. Distribution of seasonal rainfall [J]. Advances in Atmospheric Sciences, 18(5): 1005-1017.
in the East Asian monsoon region[J]. Theoretical and Applied DOI: 10. 1007/bf03403519.
Climatology, 73: 151-168. DOI: 10. 1007/s00704-002-0679-3. 陈子凡, 王磊, 李谢辉, 等, 2022. 西南地区极端降水时空变化特征
Qiao P J, Liu W Q, Zhang Y W, et al, 2021. Complex networks re‐ 及其与强 ENSO 事件的关系[J]. 高原气象, 41(3): 604-616.
veal teleconnections between the global SST and rainfall in south‐ DOI: 10. 7522/j. issn. 1000-0534. 2022. 00004. Chen Z F, Wang
west China[J]. Atmosphere, 12(1): 101. DOI: 10. 3390/at‐ L, Li X H, et al, 2022. Spatiotemporal change characteristics of
mos12010101. extreme precipitation in Southwestern China and its relationship
Shi P, Wu M, Qu S M, et al, 2015a. Spatial distribution and tempo‐ with Intense ENSO Events[J]. Plateau Meteorology, 41(3):
ral trends in precipitation concentration indices for the Southwest 604-616. DOI: 10. 7522/j. issn. 1000-0534. 2022. 00004.
China[J]. Water Resources Management, 29: 3941-3955. DOI: 董敏, 吴统文, 王在志, 等, 2013. BCC_CSM1. 0 模式对 20 世纪降
10. 1007/s11269-015-1038-3. 水及其变率的模拟[J]. 应用气象学报, 24(1): 1-11. Dong M,
Shi X J, Chen Z R, Wang H, et al, 2015b. Convolutional LSTM net‐ Wu T W, Wang Z Z, et al, 2013. Simulation of the precipitation
work: A machine learning approach for precipitation nowcasting and its variation during the 20th century using the BCC climate
[C]. Advances in Neural Information Processing Systems, 28. model (BCC_CSM1. 0)[J]. Journal of Applied Meteorological
Sutskever I, Vinyals O, Le Q V, 2014. Sequence to sequence learning Science, 24(1): 1-11.
with neural networks[C]. Advances in Neural Information Pro‐ 郭渠, 刘向文, 吴统文, 等, 2017. 基于 BCC_CSM 模式的中国东部
cessing Systems, 27. 夏季降水预测检验及订正[J]. 大气科学, 41(1): 71-90. DOI:
Voyant C, Notton G, Kalogirou S, et al, 2017. Machine learning 10. 3878/j. issn. 1006-9895. 1602. 15280. Guo Q, Liu X W, Wu
methods for solar radiation forecasting: a review[J]. Renewable T W, et al, 2017. Verification and correction of East China sum‐
energy, 105: 569-582. DOI: 10. 1016/j. renene. 2016. 12. 095. mer rainfall prediction based on BCC_CSM Model[J]. Chinese
Wang L, Chen W, Zhou W, 2014. Assessment of future drought in Journal of Atmospheric Sciences, 41(1): 71-90. DOI: 10. 3878/
Southwest China based on CMIP5 multimodel projections[J]. Ad‐ j. issn. 1006-9895. 1602. 15280.
vances in Atmospheric Sciences, 31: 1035-1050. DOI: 10. 1007/ 贺倩, 汪明, 刘凯, 2022. 基于机器学习的气温要素空间插值[J].
s00376-014-3223-3. 高原气象, 41(3): 733-748. DOI: 10. 7522/j. issn. 1000-0534.
Wang L, Chen W, Zhou W, et al, 2015. Teleconnected influence of 2021. 000007. Qian H, Wang M, Liu K, 2022. Spatial interpola‐
tropical Northwest Pacific sea surface temperature on interannual tion of air temperature based on machine learning[J]. Plateau Me‐
variability of autumn precipitation in Southwest China[J]. Cli‐ teorology, 41(3): 733-748. DOI: 10. 7522/j. issn. 1000-0534.
mate Dynamics, 45: 2527-2539. DOI: 10. 1007/s00382-015- 2021. 000007.
2490-8. 贾何佳, 李谢辉, 王磊, 等, 2022. 基于机器学习的西南地区遥感干
Wang L, Huang G, Chen W, et al, 2018. Wet-to-dry shift over South‐ 旱监测与评估[J]. 高原气象, 41(6): 1572-1582. DOI: 10.
west China in 1994 tied to the warming of tropical warm pool[J]. 7522/j. issn. 1000-0534. 2022. 00006. Jia H J, Li X H, Wang L,
Climate Dynamics, 51: 3111-3123. DOI: 10. 1007/s00382-018- et al, 2022. Remote sensing drought monitoring and assessment
4068-8. in Southwestern China based on machine learning[J]. Plateau Me‐
Wei L, Hu K H, Hu X D, 2018. Rainfall occurrence and its relation teorology, 41(6): 1572-1582. DOI: 10. 7522/j. issn. 1000-
to flood damage in China from 2000 to 2015[J]. Journal of Moun‐ 0534. 2022. 00006.
tain Science, 15(11): 2492-2504. DOI: 10. 1007/s11629-018- 李祥, 张立凤, 王敬囝, 2020. 梅雨锋暴雨预报对分辨率与积云参
4931-4. 数化的敏感性[J]. 暴雨灾害, 39(6): 637-646. DOI: 10. 3969/
White C J, Carlsen H, Robertson A W, et al, 2017. Potential applica‐ j. issn. 1004-9045. 2020. 06. 012. Li X, Zhang L F, Wang J J,
tions of subseasonal‐to‐seasonal (S2S) predictions[J]. Meteorolog‐ 2020. The sensitivity of the prediction of Meiyu torrential rainfall
ical Applications, 24(3): 315-325. DOI: 10. 1002/met. 1654. to model resolution and cumulus parameterization[J]. Torrential
Wu T W, Yu R C, Zhang F, et al, 2010. The Beijing Climate Center Rain and Disasters, 637-646. DOI: 10. 3969/j. issn. 1004-9045.
atmospheric general circulation model: description and its perfor‐ 2020. 06. 012.
mance for the present-day climate[J]. Climate Dynamics, 34: 林倩, 陈杰, 李威, 等, 2019. S2S 次季节到季节预报对全球降水预
123-147. DOI: 10. 1007/s00382-008-0487-2. 报的性能评价[J]. 水资源研究, 8(6): 547-556. DOI: 10.
Xia Y, Guan Z Y, Long Y, 2020. Relationships between convective 12677/jwrr. 2019. 86062. Lin Q, Chen J, Li W, et al, 2019. Per‐
activity in the Maritime Continent and precipitation anomalies in formance of sub-seasonal to seasonal (S2S) products for global
Southwest China during boreal summer[J]. Climate Dynamics, precipitation forecasts[J]. Journal of Water Resources Research,
54(1-2): 973-986. DOI: 10. 1007/s00382-019-05039-x. 8(6): 547-556. DOI: 10. 12677/jwrr. 2019. 86062.