Page 145 - 《高原气象》2025年第3期
P. 145

3 期               张淏元等:基于深度学习提升中国西南地区夏季降水短期气候预测的研究                                         703
                 [J]. Atmospheric Research, 94(4): 512-533. DOI: 10. 1016/j.  Zhang R H, 2001. Relations of water vapor transport from Indian mon‐
                  atmosres. 2009. 08. 017.                          soon  with  that  over  East Asia  and  the  summer  rainfall  in  China
               Qian W, Kang H S, Lee D K, 2002. Distribution of seasonal rainfall   [J]. Advances  in  Atmospheric  Sciences,  18(5):  1005-1017.
                  in  the  East  Asian  monsoon  region[J]. Theoretical  and  Applied   DOI: 10. 1007/bf03403519.
                  Climatology, 73: 151-168. DOI: 10. 1007/s00704-002-0679-3.  陈子凡, 王磊, 李谢辉, 等, 2022. 西南地区极端降水时空变化特征
               Qiao P J, Liu W Q, Zhang Y W, et al, 2021. Complex networks re‐  及其与强 ENSO 事件的关系[J]. 高原气象, 41(3): 604-616.
                  veal teleconnections between the global SST and rainfall in south‐  DOI: 10. 7522/j. issn. 1000-0534. 2022. 00004. Chen Z F, Wang
                  west  China[J]. Atmosphere,  12(1):  101. DOI:  10. 3390/at‐  L, Li X H, et al, 2022. Spatiotemporal change characteristics of
                  mos12010101.                                      extreme  precipitation  in  Southwestern  China  and  its  relationship
               Shi P, Wu M, Qu S M, et al, 2015a. Spatial distribution and tempo‐  with  Intense  ENSO  Events[J]. Plateau  Meteorology,  41(3):
                  ral trends in precipitation concentration indices for the Southwest   604-616. DOI: 10. 7522/j. issn. 1000-0534. 2022. 00004.
                  China[J]. Water Resources Management, 29: 3941-3955. DOI:   董敏, 吴统文, 王在志, 等, 2013. BCC_CSM1. 0 模式对 20 世纪降
                  10. 1007/s11269-015-1038-3.                       水及其变率的模拟[J]. 应用气象学报, 24(1): 1-11. Dong M,
               Shi X J, Chen Z R, Wang H, et al, 2015b. Convolutional LSTM net‐  Wu T W, Wang Z Z, et al, 2013. Simulation of the precipitation
                  work: A machine learning approach for precipitation nowcasting  and  its  variation  during  the  20th  century  using  the  BCC  climate
                 [C]. Advances in Neural Information Processing Systems, 28.  model (BCC_CSM1. 0)[J]. Journal  of  Applied  Meteorological
               Sutskever I, Vinyals O, Le Q V, 2014. Sequence to sequence learning   Science, 24(1): 1-11.
                  with  neural  networks[C]. Advances  in  Neural  Information  Pro‐  郭渠, 刘向文, 吴统文, 等, 2017. 基于 BCC_CSM 模式的中国东部
                  cessing Systems, 27.                              夏季降水预测检验及订正[J]. 大气科学, 41(1): 71-90. DOI:
               Voyant  C,  Notton  G,  Kalogirou  S,  et  al,  2017. Machine  learning   10. 3878/j. issn. 1006-9895. 1602. 15280. Guo Q, Liu X W, Wu
                  methods for solar radiation forecasting: a review[J]. Renewable   T W, et al, 2017. Verification and correction of East China sum‐
                  energy, 105: 569-582. DOI: 10. 1016/j. renene. 2016. 12. 095.  mer  rainfall  prediction  based  on  BCC_CSM  Model[J]. Chinese
               Wang L, Chen W, Zhou W, 2014. Assessment of future drought in   Journal of Atmospheric Sciences, 41(1): 71-90. DOI: 10. 3878/
                  Southwest China based on CMIP5 multimodel projections[J]. Ad‐  j. issn. 1006-9895. 1602. 15280.
                  vances in Atmospheric Sciences, 31: 1035-1050. DOI: 10. 1007/  贺倩, 汪明, 刘凯, 2022. 基于机器学习的气温要素空间插值[J].
                  s00376-014-3223-3.                                高原气象, 41(3): 733-748. DOI: 10. 7522/j. issn. 1000-0534.
               Wang L, Chen W, Zhou W, et al, 2015. Teleconnected influence of   2021. 000007. Qian H, Wang M, Liu K, 2022. Spatial interpola‐
                  tropical Northwest Pacific sea surface temperature on interannual   tion of air temperature based on machine learning[J]. Plateau Me‐
                  variability  of  autumn  precipitation  in  Southwest  China[J]. Cli‐  teorology, 41(3): 733-748. DOI: 10. 7522/j. issn. 1000-0534.
                  mate  Dynamics,  45:  2527-2539. DOI:  10. 1007/s00382-015-  2021. 000007.
                  2490-8.                                        贾何佳, 李谢辉, 王磊, 等, 2022. 基于机器学习的西南地区遥感干
               Wang L, Huang G, Chen W, et al, 2018. Wet-to-dry shift over South‐  旱监测与评估[J]. 高原气象, 41(6): 1572-1582. DOI: 10.
                  west China in 1994 tied to the warming of tropical warm pool[J].  7522/j. issn. 1000-0534. 2022. 00006. Jia H J, Li X H, Wang L,
                  Climate Dynamics, 51: 3111-3123. DOI: 10. 1007/s00382-018-  et al, 2022. Remote sensing drought monitoring and assessment
                  4068-8.                                           in Southwestern China based on machine learning[J]. Plateau Me‐
               Wei L, Hu K H, Hu X D, 2018. Rainfall occurrence and its relation   teorology,  41(6):  1572-1582. DOI:  10. 7522/j. issn. 1000-
                  to flood damage in China from 2000 to 2015[J]. Journal of Moun‐  0534. 2022. 00006.
                  tain Science, 15(11): 2492-2504. DOI: 10. 1007/s11629-018-  李祥, 张立凤, 王敬囝, 2020. 梅雨锋暴雨预报对分辨率与积云参
                  4931-4.                                           数化的敏感性[J]. 暴雨灾害, 39(6): 637-646. DOI: 10. 3969/
               White C J, Carlsen H, Robertson A W, et al, 2017. Potential applica‐  j. issn. 1004-9045. 2020. 06. 012. Li X, Zhang L F, Wang J J,
                  tions of subseasonal‐to‐seasonal (S2S) predictions[J]. Meteorolog‐  2020. The sensitivity of the prediction of Meiyu torrential rainfall
                  ical Applications, 24(3): 315-325. DOI: 10. 1002/met.  1654.  to model resolution and cumulus parameterization[J]. Torrential
               Wu T W, Yu R C, Zhang F, et al, 2010. The Beijing Climate Center   Rain and Disasters, 637-646. DOI: 10. 3969/j. issn. 1004-9045.
                  atmospheric general circulation model: description and its perfor‐  2020. 06. 012.
                  mance  for  the  present-day  climate[J]. Climate  Dynamics,  34:   林倩, 陈杰, 李威, 等, 2019. S2S 次季节到季节预报对全球降水预
                  123-147. DOI: 10. 1007/s00382-008-0487-2.         报的性能评价[J]. 水资源研究, 8(6): 547-556. DOI: 10.
               Xia Y, Guan Z Y, Long Y, 2020. Relationships between convective   12677/jwrr. 2019. 86062. Lin Q, Chen J, Li W, et al, 2019. Per‐
                  activity in the Maritime Continent and precipitation anomalies in   formance  of  sub-seasonal  to  seasonal (S2S)  products  for  global
                  Southwest  China  during  boreal  summer[J]. Climate  Dynamics,   precipitation forecasts[J]. Journal of Water Resources Research,
                  54(1-2): 973-986. DOI: 10. 1007/s00382-019-05039-x.  8(6): 547-556. DOI: 10. 12677/jwrr. 2019. 86062.
   140   141   142   143   144   145   146   147   148   149   150