Page 144 - 《高原气象》2025年第3期
P. 144

高     原      气     象                                 44 卷
              702
                        表2  三个模型的三种评估结果                           (1): 55. DOI: 10. 3390/su11010055.
                Tabel 2  The evaluation results for the three models   Feng L, Li T, Yu W D, 2014. Cause of severe droughts in Southwest
                               are as follows                      China  during  1951-2010[J]. Climate  Dynamics,  43:  2033-
                                                                   2042. DOI: 10. 1007/s00382-013-2026-z.
                   模型         时间       σ      Bias    ME
                                                                Gao J M, Sang Y H, 2017. Identification and estimation of landslide-
               SST-ConvLSTM   2019   1. 333  1. 061  -0. 058
                                                                   debris flow disaster risk in primary and middle school campuses
                              2020   1. 329  1. 074  -0. 075       in a mountainous area of Southwest China[J]. International Jour‐
                              2021   1. 327  0. 972  -0. 154
                                                                   nal of Disaster Risk Reduction, 25: 60-71. DOI: 10. 1016/j. ij‐
                              2022   0. 863  0. 707  -0. 049
                                                                   drr. 2017. 07. 012.
                 ConvLSTM     2019   1. 660  1. 244   0. 791    Ho H C, Knudby A, Sirovyak P, et al, 2014. Mapping maximum ur‐
                              2020   1. 744  1. 231   0. 918       ban air temperature on hot summer days[J]. Remote Sensing of
                              2021   1. 855  1. 328   1. 028       Environment, 154: 38-45. DOI: 10. 1016/j. rse. 2014. 08. 012.
                                                                Jiang X W, Shu J C, Wang X, et al, 2017. The roles of convection
                              2022   1. 120  0. 850  -0. 501
                                                                   over the western Maritime Continent and the Philippine Sea in in‐
                   NCC        2019   2. 150  1. 850   0. 692
                                                                   terannual variability of summer rainfall over southwest China[J].
                              2020   2. 788  2. 297   1. 137       Journal  of  Hydrometeorology,  18(7):  2043-2056. DOI:  10.
                              2021   2. 952  2. 363   0. 915       1175/JHM-D-16-0292. 1.
                              2022   1. 574  1. 334  -0. 675    Kim S, Hong S, Joh M, et al, 2017. Deeprain: Convlstm network for
                                                                   precipitation  prediction  using  multichannel  radar  data[J]. arXiv
                 黑体突出表示效果最好(the best performance highlighted)
                                                                   preprint arXiv: 1711. 02316. DOI: 10. 48550/arXiv. 1711. 02316.
             结构能够增强模型的非线性映射能力, 从而更精准                            Koster R D, Dirmeyer P A, Guo Z C, et al, 2004. Regions of strong
             地捕捉降水变化中的复杂特征。同时, 对超参数的                               coupling between soil moisture and precipitation[J]. Science, 305
             调整, 如学习率和批量大小, 能够平衡模型的训练                             (5687): 1138-1140. DOI: 10. 1126/science. 1100217.
                                                                Kusiak A, Zheng H Y, Song Z, 2009. Wind farm power prediction: a
             速度和稳定性, 确保模型在迭代过程中不断优化。
                                                                   data‐mining approach[J]. Wind Energy: An International Journal
             在数据输入方面, 本文建议可以尝试使用不同分辨
                                                                   for Progress and Applications in Wind Power Conversion Technol‐
             率的海表温度和降水数据, 以探索不同尺度信息对                               ogy, 12(3): 275-293. DOI: 10. 1002/we. 295.
             预测精度的影响。此外, 通过调整海表温度与降水                            Li J Z, Shi Y, Zhang T, et al, 2023. Radar precipitation nowcasting
             数据在模型中的权重比例, 可以进一步挖掘两种数                               based on ConvLSTM model in a small watershed in north China
             据之间的协同作用, 提升模型对降水变化的敏感度                              [J]. Natural  Hazards,  1-23. DOI:  10. 1007/s11069-023-
             和准确性。此外, 考虑到降水变化的局地性特征,                               06193-6.
                                                                Lim Y, Jo S, Lee J, et al, 2012. Prediction of East Asian summer pre‐
             使用与预测区域更为相关的局部海表温度数据也
                                                                   cipitation  via  independent  component  analysis[J]. Asia-Pacific
             是一个值得探索的方向。
                                                                   Journal of Atmospheric Sciences, 48: 125-134. DOI: 10. 1007/
                  SST-ConvLSTM模型作为创新性的降水预测工                        s13143-012-0012-8.
             具, 在西南地区的降水预测方面已经展现显著的优                            Lin W, Wen C, Wen Z, et al, 2015. Drought in Southwest China: a
             势。其在捕捉降水时空变化特征、 预测极端降水事                               review[J]. Atmospheric  and  Oceanic  Science  Letters,  8(6):
             件等方面的能力, 使得该模型在降水研究领域具有                               339-344. DOI: 10. 3878/AOSL20150043.
             巨大的应用潜力。因此, 未来的研究可深入探索                             Liu W, Wang Y Q, Zhong D, et al, 2022. ConvLSTM network-based
                                                                   rainfall nowcasting method with combined reflectance and radar-
             SST-ConvLSTM 模型的性能边界和适用范围, 进一
                                                                   retrieved  wind  field  as  inputs[J]. Atmosphere,  13(3):  411.
             步提升其在降水预测中的准确性和可靠性。
                                                                   DOI: 10. 3390/atmos13030411.
             参考文献(References):                                  Ma Z F, Liu J, Zhang S Q, et al, 2013. Observed climate changes in
                                                                   southwest  China  during  1961-2010[J]. Advances  in  Climate
             Behrang M A, Assareh E, Ghanbarzadeh A, et al, 2010. The poten‐  Change  Research,  4(1):  30-40. DOI:  10. 3724/SP. J. 1248.
                 tial of different artificial neural network (ANN) techniques in dai‐  2013. 030.
                 ly  global  solar  radiation  modeling  based  on  meteorological  data  Mellit A,  Pavan A  M,  Benghanem  M,  2013. Least  squares  support
                [J]. Solar Energy, 84(8): 1468-1480. DOI: 10. 1016/j. solen‐  vector  machine  for  short-term  prediction  of  meteorological  time
                 er. 2010. 05. 009.                                series[J]. Theoretical and Applied Climatology, 111: 297-307.
             Chou J M, Xian T, Dong W J, et al, 2018. Regional temporal and   DOI: 10. 1007/s00704-012-0661-7.
                 spatial trends in drought and flood disasters in China and assess‐  Michaelides  S,  Levizzani  V, Anagnostou  E,  et  al,  2009. Precipita‐
                 ment  of  economic  losses  in  recent  years[J]. Sustainability,  11  tion:  Measurement,  remote  sensing,  climatology  and  modeling
   139   140   141   142   143   144   145   146   147   148   149