Page 50 - 《高原气象》2023年第1期
P. 50

高     原      气     象                                 42 卷
              46
                 (4)  青藏高原区域向下短波辐射和净全辐射                         Wang M R, Zhou S W, Duan A M, 2012. Trend in the atmospheric
             分布具有明显的日变化和空间变化特征。春秋季                                 heat source over the central and eastern Tibetan Plateau during re‐
                                                                   cent decades: comparison of observations and reanalysis data[J].
             节向下短波辐射、 净全辐射均在 12:00 达到最大,
                                                                   Chinese Science Bulletin, 57(5): 548-557.
             夏季和冬季在 13:00 达到最大。受地形及气候条件
                                                                Wang W  H,  Liang  S  L, Augustine  J,  2009. Estimating  high  spatial
             影响, 以 85°E、 95°E 为分界线, 青藏高原西部、 中                      resolution  clear-sky  land  surface  upwelling  longwave  radiation
             部和东部地区向下短波辐射自西向东随海拔高度                                 from  MODIS  data[J]. IEEE Transactions  on  Geoscience  &  Re‐
             的降低呈现逐渐减少的分布形态, 净全辐射自西向                               mote Sensing, 47(5): 1559-1570.
             东呈现“低-高-低”的分布形态。                                   Wielicki B A, Barkstrom B R, Harrison E F, et al, 1996. Clouds and
                                                                   the Earth’s Radiant Energy System(CERES): an earth observing
                  本 文 通 过 整 合 TIPEX  II、  TIPEX  III、  CAS
                                                                   system  experiment[J]. Bulletin  of  the American  Meteorological
             NIEER &ITPR 和 CMA 辐射业务观测站四种来源辐
                                                                   Society, 77(5): 853-868.
             射观测数据, 初步形成了青藏高原多源辐射基本要                            Wu G X, Liu Y M, Dong B W, et al, 2012. Revisiting Asian mon‐
             素逐小时曝辐量整合数据集(ISDQTP), 但 GAME/                         soon formation and change associated with Tibetan Plateau forc‐
             Tibet[GEWEX(Global Energy and Water Cycle Ex‐         ing: I. Formation[J]. Climate Dynamics, 39(5): 1169-1181.
             periment) Asian  Monsoon  Experiment  on  the  Qing‐  Yang K, He J, Tang W J, et al, 2010. On downward shortwave and
                                                                   longwave  radiations  over  high  altitude  regions:  observation  and
             hai-Xizang  Plateau]、  CAMP/Tibet [CEOP(Coordi‐
                                                                   modeling in the Tibetan Plateau[J]. Agricultural & Forest Meteo‐
             nated  Enhanced  Observing  Period)  Asia-Australia   rology, 150(1): 38-46.
             Monsoon  Project  on  the  Qinghai-Xizang  Plateau]及  Yang K, Koike T, Ye B S, 2006. Improving estimation of hourly, dai‐
             JICA(Japan International Cooperation Agency)等科        ly, and monthly solar radiation by importing global data sets[J].
             学试验数据并未实现收集整合, 同时本文只初步分                               Agricultural & Forest Meteorology, 137(1/2): 43-55.
                                                                Zhang Y C, Rossow W B, Lacis A A, et al, 2004. Calculation of radi‐
             析了向下短波辐射和净全辐射数据的时空分布特
                                                                   ative fluxes from the surface to top of atmosphere based on ISC‐
             征, 对于辐射变化过程机理及其他辐射基本要素的
                                                                   CP and other global data sets: refinements of the radiative trans‐
             分析评估还需要结合更多数据进一步分析研究。
                                                                   fer model and the input data[J]. Journal of Geophysical Research
             参考文献:                                                 Atmospheres, 109(D19): D19105.
                                                                Zhang Y C, Rossow W B, Stackhouse P W, 2006. Comparison of dif‐
                                                                   ferent  global  information  sources  used  in  surface  radiative  flux
             Cox S J, Stackhouse P, Gupta S, et al, 2006. The NASA/GEWEX
                                                                   calculation:  radiative  properties  of  the  near-surface  atmosphere
                 surface radiation budget project[J]. In Proceedings of MUC-4, 20
                                                                  [J]. Journal of Geophysical Research: Atmospheres, 111(D13):
                (11): 116-119.
                                                                   D13106
             Jia A L, Liang S L, Jiang B, et al, 2018. Comprehensive assessment
                                                                Zhao P, Xu X D, Chen F, et al, 2018. The third atmospheric scientif‐
                 of  global  surface  net  radiation  products  and  uncertainty  analysis
                                                                   ic experiment for understanding the earth atmosphere coupled sys‐
                [J]. Journal  of  Geophysical  Research: Atmospheres,  123(4):
                 1970-1989.                                        tem over the Qinghai-Xizang Plateau and its effects[J]. Bulletin
             Eischeid J K, Baker C B, Karl T R, 1995. The quality control of long-  of the American Meteorological Society, 99(4): 757-776.
                 term climatological data using objective data analysis[J]. Journal   卞林根, 陆龙骅, 逯昌贵, 等, 2001. 1998年夏季青藏高原辐射平衡
                 of Applied Meteorology, 34(12): 2787-2787         分量特征[J]. 大气科学, 25(5): 577-588.
             Kato S, Rose F G, Rutan D A, et al, 2018. Surface irradiances of edi‐  陈丹, 周长艳, 齐冬梅, 等, 2019. 夏季青藏高原及周边大气热源与
                 tion 4. 0 Clouds and the Earth's Radiant Energy System (CERES)   四川盆地暴雨的关系[J]. 高原气象, 38(6): 1149-1157. DOI:
                 Energy Balanced and Filled (EBAF) data product[J]. Journal of   10. 7522/j. issn. 1000-0534. 2019. 00041.
                 Climate, 31(11): 4501-4527.                    陈隆勋, 段庭扬, 李维亮, 1985. 1979 年夏季青藏高原上空大气热
             Rossow W B, Schiffer R A, 1991. ISCCP cloud data products[J]. Bul‐  源的变化及大气能量收支特性[J]. 气象学报, 43(1): 3-14.
                 letin of the American Meteorological Society, 72(1): 2-20.  段安民, 肖志祥, 王子谦, 等, 2018. 青藏高原冬春积雪和地表热源
             Gui S, Liang S L, Li L, 2010. Evaluation of satellite-estimated sur‐  影响亚洲夏季风的研究进展[J]. 大气科学, 42(4): 755-766.
                 face  longwave  radiation  using  ground-based  observations[J].  高国栋, 陆渝蓉, 1980a. 青藏高原太阳辐射能量的收入状况[J]. 气
                 Journal  of  Geophysical  Research  Atmospheres,  115(D18):   象, 6(2): 30-31.
                 1-16.                                          高国栋, 陆渝蓉, 1980b. 青藏高原太阳辐射能量的支出状况[J]. 气
             Gui S, Liang S L, Wang K C, et al, 2010. Assessment of three satel‐  象, 6(3): 6-7.
                 lite-estimated land surface downwelling shortwave irradiance data   谷星月, 马耀明, 马伟强, 等, 2018. 青藏高原地表辐射通量的气候
                 sets[J]. IEEE  Geoscience  &  Remote  Sensing  Letters,  7(4):   特征分析[J]. 高原气象, 37(6): 1458-1649. DOI: 10. 7522/j.
                 776-780.                                          issn. 1000-0534. 2018. 00051.
   45   46   47   48   49   50   51   52   53   54   55