Page 271 - 《高原气象》2022年第5期
P. 271
高 原 气 象 41 卷
1364
Hurtado M,Nehorai A,2008. Polarimetric detection of targets in Sharma S,Vaishnav R,Shukla M V,et al,2016. Evaluation of cloud
heavy inhomogeneous clutter[J]. IEEE Transactions on Signal base height measurements from Ceilometer CL31 and MODIS sat‐
Processing,56(4):1349-1361. DOI:10. 1109/TSP. 2007. 909046. ellite over Ahmedabad,India[J]. Atmospheric Measurement
Kalapureddy M C R,Sukanya P,Das S K,et al,2018. A simple bio‐ Techniques,9(2):711-719. DOI:10. 5194/amt-9-711-2016.
ta removal algorithm for 35 GHz cloud radar measurements[J]. Sherwood S C,Bony S,Dufresne J L,2014. Spread in model climate
Atmospheric Measurement Techniques,11(3):1417-1436. sensitivity traced to atmospheric convective mixing[J]. Nature,
DOI:10. 5194/amt-11-1417-2018. 505(7481):37-42. DOI:10. 1038/nature12829.
Kalesse H,Kollias P,2013. Climatology of high cloud dynamics using Sokol Z,Minářová J,Novák P,2018. Classification of hydrometeors
profiling ARM Doppler radar observations[J]. Journal of Climate, using measurements of the Ka-Band Cloud Radar installed at the
26(17):6340-6359. DOI:10. 1175/JCLI-D-12-00695. 1. Milešovka Mountain(Central Europe)[J]. Remote Sensing,10
Lamer K,Kollias P,Nuijens L,2015. Observations of the variability (1674):1-19. DOI:10. 3390/rs10111674.
of shallow trade wind cumulus cloudiness and mass flux[J]. Jour‐ Stephens G L,2005. Cloud feedbacks in the climate system:A critical
nal of Geophysical Research:Atmospheres,120(12):6161- review[J]. Journal of Climate,18(2):237-273. DOI:10. 1175/
6178. DOI:10. 1002/2014JD022950. JCLI-3243. 1.
Luke E P,Kollias P,Johnson K L,et al,2008. A technique for the Stephens G L,Li J,Wild M,et al,2012. An update on Earth's energy
automatic detection of insect clutter in cloud radar returns[J]. balance in light of the latest global observations[J]. Nature Geo‐
Journal of Atmospheric and Oceanic Technology,25(9):1498- science,5(10):691-696. DOI:10. 1038/NGEO1580.
1513. DOI:10. 1175/2007JTECHA953. 1. Unal C , 2009. Spectral polarimetric radar clutter suppression to
Marchand R,Mace G G,Ackerman T,et al,2008. Hydrometeor de‐ enhance atmospheric echoes[J]. Journal of Atmospheric and Oce‐
tection using CloudSat-An Earth-orbiting 94-GHz cloud radar[J]. anic Technology,26(9):1781-1797. DOI:10. 1175/2009JTE‐
Journal of Atmospheric and Oceanic Technology,25(4):519- CHA1170. 1.
533. DOI:10. 1175/2007JTECHA1006. 1. Wang J H,Rossow W B,1995. Determination of cloud vertical struc‐
Martucci G,Milroy C,O’Dowd C D,2010. Detection of cloud-base ture from upper-air observations[J]. Journal of Applied Meteorol‐
height using Jenoptik CHM15K and Vaisala CL31 ceilometers ogy,34(10):2243-2258. DOI:10. 1175/1520-0450(1995)034
[J]. Journal of Atmospheric and Oceanic Technology,27(2): <2243:DOCVSF>2. 0. CO;2.
305-318. Wang Z,Wang Z H,Cao X Z,et al,2018. Comparison of cloud top
Minnis P,Yi Y H,Huang J P,et al,2005. Relationships between ra‐ heights derived from FY-2 meteorological satellites with heights
diosonde and RUC‐2 meteorological conditions and cloud occur‐ derived from ground-based millimeter wavelength cloud radar
rence determined from ARM data[J]. Journal of Geophysical [J]. Atmospheric Research,199:113-127. DOI:10. 1016/j. at‐
Research:Atmospheres,110(D23):D23204. DOI:10. 1029/ mosres. 2017. 09. 009.
2005JD006005. Wild M,2012. New directions:A facelift for the picture of the global
Poore K D,Wang J H,Rossow W B,1995. Cloud layer thicknesses energy balance[J]. Atmospheric Environment,55:366-367.
from a combination of surface and upper-air observations[J]. DOI:10. 1016/j. atmosenv. 2012. 03. 022.
Journal of Climate,8(3):550-568. DOI:10. 1175/2009JTE‐ Zhang J Q,Chen H B,Li Z Q,et al,2010. Analysis of cloud layer
CHA1326. 1. structure in Shouxian,China using RS92 radiosonde aided by 95
Qiu Y J,Lu C S,Luo S,2019. Tibetan Plateau cloud structure and GHz cloud radar[J]. Journal of Geophysical Research:Atmo‐
cloud water content derived from millimeter cloud radar observa‐ spheres,115(D00K30):1-13. DOI:10. 1029/2010JD014030.
tions in summer[J]. Pure and Applied Geophysics,176(4): Zhang J Q,Chen H B,Xia X A,et al,2016. Dynamic and thermody‐
1785-1796. DOI:10. 1007/s00024-018-2034-3. namic features of low and middle clouds derived from atmospher‐
Rabier F,Faccani C,Fourrié N,et al,2009. The impact of the AM‐ ic radiation measurement program mobile facility radiosonde data
MA radiosonde data on the French global assimilation and fore‐ at Shouxian,China[J]. Advances in Atmospheric Sciences,33
cast system[C]//9th EMS Annual Meeting,9th European Confer‐ (1):21-33. DOI:10. 1007/s00376-015-5032-8.
ence on Applications of Meteorology(ECAM)Abstracts,held Zhang J Q,Xia X A,Chen H B,2017a. A comparison of cloud layers
Sept. 28-Oct. 2,2009 in Toulouse,France. http://meetings. co‐ from ground and satellite active remote sensing at the Southern
pernicus. org/ems2009/,id. EMS2009-554. ,2009. p. Great Plains ARM site[J]. Advances in Atmospheric Sciences,34
Ramanathan V,Cess R,Harrison E,et al,1989. Cloud-radiative forc‐ (3):347-359. DOI:10. 1007/s00376-016-6030-1.
ing and climate:Results from the Earth Radiation Budget Experi‐ Zhang L,Dong X Q,Kennedy A,et al,2017b. Evaluation of NASA
ment[J]. Science,243(4887):57-63. GISS post-CMIP5 single column model simulated clouds and pre‐
Russell R W,Wilson J W,1997. Radar-observed“fine lines”in the cipitation using ARM Southern Great Plains observations[J]. Ad‐
optically clear boundary layer:Reflectivity contributions from vances in Atmospheric Sciences,34(3):306-320. DOI:10.
aerial plankton and its predators[J]. Boundary-Layer Meteorolo‐ 1007/s00376-016-5254-4.
gy,82(2):235-262. Zhou C,Zelinka M D,Klein S A,2016. Impact of decadal cloud vari‐