Page 93 - 《高原气象》2022年第1期
P. 93
1 期 刘宜纲等:区域气候模式RegCM砾石参数化方案在青藏高原不同区域土壤水分输送的模拟分析 91
flow on stone-covered desert surfaces[J]. Catena,23(1/2):111- ture and soil moisture from tropical rainfall measuring mission/mi‐
140. DOI:10. 1016/0341-8162(94)90057-4. crowave imagerRemote sensing data[J]. Journal of Geophysical
Arocena J,Hall K,Zhu L P,2012. Soil formation in high elevation Research Atmospheres,108. DOI:10. 1029/2002JD00217.
and permafrost areas in the Qinghai Plateau(China)[J]. Spanish Wu X D,Zhao L,Fang H B,et al,2012. Soil enzyme activities in
Journal of Soil Science,2(2):34-49. DOI:10. 3232/SJSS. permafrost regions of the western Qinghai-Tibetan Plateau[J].
2012. V2. N2. 02. Soil science Society of America Journal,76(4):1280. DOI:
Brakensiek D L,Rawls W J,Stephenson G R,1986. Determining the 10. 2136/sssaj2011. 0400.
saturated hydraulic conductivity of a soil containing rock frag‐ Yeh T C,Wetherald R T,Manabe S,1984. The effect of soil moisture
ments[J]. Soil science Society of America Journal,50(3):834- on the short-term climate and hydrology change——a numerical
835. DOI:10. 2136/sssaj1986. 03615995005000030053x. experiment[J]. Monthly Weather Review,112(3):474. DOI:
Brouwer J,Anderson H,2000. Water holding capacity of ironstone 10. 1175/1520-0493(1984)1122. 0. CO;2.
gravel in a typic plinthoxeralf in Southeast Australia[J]. Soil sci‐ 冯晓莉,申红艳,李万志,等,2020. 1961-2017 年青藏高原暖湿季
ence Society of America Journal,64(5):1603-1608. DOI:10. 节极端降水时空变化特征[J]. 高原气象,39(4):694-705.
2136/sssaj2000. 6451603x. DOI:10. 7522/j. issn. 1000-0534. 2020. 00029.
Clapp R B,Hornberger G M,1978. Empirical equations for some soil 何玉洁,宜树华,郭新磊,2017. 青藏高原含砂砾石土壤导热率实
hydraulic properties[J]. Water Resources Research,14(4):601- 验研究[J]. 冰川冻土,39(2):343-350. DOI:10. 7522/j. issn.
604. DOI:10. 1029/WR014i004p00601.
1000-0240. 2017. 0039.
Cosby B J,Hornberger G M,Clapp R B,et al,1984. A statistical ex‐
李燕,高明,魏朝富,等,2006. 土壤砾石的分布及其对水文过程的
ploration of the relationships of soil moisture characteristics to the
影响[J]. 中国农学通报,22(5):271-276. DOI:10. 3969/j.
physical properties of soils[J]. Water Resources Research,20
issn. 1000-6850. 2006. 05. 072.
(6):682-690. DOI:10. 1029/WR020i006p00682.
刘宜纲,吕世华,徐悦,等,2020. 区域气候模式 RegCM 砾石参数
Lawrence D M,Slater A G,2008. Incorporating organic soil into a
化方案及其在青藏高原模拟效果评估[J]. 高原气象,39(6):
global climate model[J]. Climate Dynamics,30(2/3):145-160.
1257-1269. DOI:10. 7522/j. issn. 1000-0534. 2019. 00141.
DOI:10. 1007/s00382-007-0278-1.
罗斯琼,吕世华,张宇,等,2009. 青藏高原中部土壤热传导率参数
Niu G Y,Yang Z L,Dickinson R E,et al,2005. A simple TOPMOD‐
化方案的确立及在数值模式中的应用[J]. 地球物理学报,52
EL-based runoff parameterization(SIMTOP)for use in global cli‐
(4):919-928. DOI:10. 3969/j. issn. 0001-5733. 2009. 04. 008.
mate models[J]. Journal of Geophysical Research,110(D21):
潘永洁,吕世华,高艳红,等,2015. 砾石对青藏高原土壤水热特性
D21106. DOI:10. 1029/2005jd006111.
影响的数值模拟[J]. 高原气象,34(5):1224-1236. DOI:10.
Ohtsuka T,Hirota M,Zhang X,et al,2008. Soil organic carbon
7522/j. issn. 1000-0534. 2014. 00055.
pools in alpine to nival zones along an altitudinal gradient(4400-
时忠杰,王彦辉,于澎涛,等,2008. 六盘山森林土壤中的砾石对渗
5300m)on the Tibetan Plateau[J]. Polar Science,2(4):277-
透性和蒸发的影响[J]. 生态学报,28(12):6090-6098. DOI:
285. DOI:10. 1016/j. polar. 2008. 08. 003.
Peck A J,Watson J D,1979. Hydraulic conductivity and flow in non- 10. 3321/j. issn:1000-0933. 2008. 12. 037.
uniform soil[C]//Workshop on Soil Physics and Field Heteroge‐ 吴统文,李培基,1998. 青藏高原多,少雪年后期西北干旱区降水
neity CSIRO. Division of Environmental Mechanics,Canberra, 的对比分析[J]. 高原气象,17(4):364-372.
Australia,31-39. 杨成,吴通华,姚济敏,等,2020. 青藏高原表层土壤热通量的时空
Shukla J,Mintz Y,1982. Influence of land-surface evapotranspiration 分布特征[J]. 高原气象,39(4):706-718. DOI:10. 7522/j.
on the earth’s climate[J]. Science,215(4539):1498-1501. issn. 1000-0534. 2020. 00022.
DOI:10. 1126/science. 215. 4539. 1498. 张志蓉,2008. 桂西北石质土壤中砾石的分布规律及其对水分性质
Wen J,Su B,Ma Y M,2003. Determination of land surface tempera‐ 的影响[D]. 武汉:华中农业大学.