Page 50 - 《爆炸与冲击》2026年第01期
P. 50

第 46 卷    第 1 期                   爆    炸    与    冲    击                       Vol. 46, No. 1
                2026 年 1 月                    EXPLOSION AND SHOCK WAVES                           Jan., 2026

               DOI:10.11883/bzycj-2024-0274


                   铝蜂窝夹芯板入水冲击动态响应特性实验研究                                                              *


                                                               2
                                                                       3
                                                        2
                                         郭开岭 ,廖    永 ,朱志奎 ,刘    栋 ,朱    凌     2,4
                                               1,2
                               (1. 高性能船舶技术教育部重点实验室(武汉理工大学),湖北 武汉 430063;
                                    2. 武汉理工大学船海与能源动力工程学院,湖北 武汉 430063;
                                          3. 康明斯东亚研发有限公司,湖北 武汉 430056;
                                          4. 武汉理工大学威海研究院,山东 威海 264300)

                  摘要: 通过实验方法研究了铝蜂窝夹芯板在入水冲击载荷作用下的压力载荷特性和结构变形机理。首先,搭建
               了蜂窝夹芯板入水冲击实验平台,开展了不同落体高度下的蜂窝夹芯板入水冲击实验,通过三维扫描仪得到了面板的
               变形结果,并监测了不同测点的入水冲击压力时程,同时验证了实验的可重复性。在此基础上,研究了蜂窝夹芯板入
               水冲击过程中的压力载荷特性,并与不同结构的入水冲击压力进行了对比。此外,分析了蜂窝夹芯板的变形模式、最
               终挠度等特性,给出了面板最终挠度和芯层压缩量的拟合公式。研究结果表明,蜂窝夹芯板表面的入水冲击压力分布
               不均匀,但在一定落体高度范围内,其压力峰值均与落体高度近似呈线性变化。与刚性平板入水冲击相比,蜂窝夹芯
               板的入水冲击压力峰值较小。相比同质量的等效铝板而言,蜂窝夹芯板的入水冲击压力峰值更小,压力持续时间更
               长。不同落体高度下,蜂窝夹芯板的面板变形模式基本一致。随着落体高度的增加,蜂窝夹芯板前面板和后面板中点
               处的最终挠度近似呈斜率减小的二次抛物线增长。在入水冲击载荷作用下,蜂窝夹芯板后面板的变形明显小于等效
               铝板的变形,表明蜂窝夹芯板具有更好的抗冲击性能。
                  关键词: 蜂窝夹芯板;入水冲击实验;入水冲击载荷;变形模式;最终挠度
                  中图分类号: O353.4   国标学科代码: 13025   文献标志码: A


                    Experimental study on dynamic responses of aluminum honeycomb
                                sandwich plates subjected to water-entry impact

                                           1,2
                                                        2
                                                                             3
                                                                   2
                                 GUO Kailing , LIAO Yong , ZHU Zhikui , LIU Dong , ZHU Ling 2,4
                               (1. Key Laboratory of High Performance Ship Technology, Ministry of Education,
                                     Wuhan University of Technology, Wuhan 430063, Hubei, China;
                                  2. School of Naval Architecture, Ocean and Energy Power Engineering,
                                     Wuhan University of Technology, Wuhan 430063, Hubei, China;
                         3. Cummins East Asia Research and Development Company, Ltd., Wuhan 430056, Hubei, China;
                         4. Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, China)

               Abstract:   The  pressure  characteristics  and  structural  deformation  mechanism  of  aluminum  honeycomb  sandwich  plates
               (AHSPs)  under  water-entry  impact  were  investigated  through  experimental  methods.  A  self-designed  drop  experimental
               platform in the water tank was established, and the water-entry impact experiments of AHSPs at different drop heights were
               carried out. Meanwhile, the deformation of the face sheets was measured by a 3D scanner, and the time history of water impact
               pressure at different measuring points was monitored. Furthermore, the repeatability of the experiment was verified. On this
               basis, the water impact load characteristics of AHSPs during the process of water entry were studied and compared with those



                 *   收稿日期: 2024-08-02;修回日期: 2024-12-02
                   基金项目: 国家自然科学基金(12202328,12172265)
                   第一作者: 郭开岭(1989- ),男,博士,副教授,guokailing@whut.edu.cn
                   通信作者: 朱 凌(1962- ),男,博士,教授,lingzhu@whut.edu.cn


                                                         011103-1
   45   46   47   48   49   50   51   52   53   54   55