Page 101 - 《爆炸与冲击》2026年第01期
P. 101

第 46 卷    第 1 期                   爆    炸    与    冲    击                       Vol. 46, No. 1
                2026 年 1 月                    EXPLOSION AND SHOCK WAVES                           Jan., 2026

               DOI:10.11883/bzycj-2025-0180


                                  非药式水下爆炸冲击波加载的

                                          PD-SPH          建模与分析               *


                                            1,2
                                                    2
                                                            2
                                      陈    丁 ,余泽洋 ,姚学昊 ,周章涛 ,王孟元 ,黄    丹           2
                                                                           3
                                                                    3
                                       (1. 福州大学紫金地质与矿业学院,福建 福州 350108;
                                        2. 河海大学力学与工程科学学院,江苏 南京 211100;
                                           3. 中国船舶科学研究中心,江苏 无锡 214082)
                  摘要: 针对舰艇抗爆炸冲击性能评估面临的强非线性流固耦合、结构大变形及损伤破坏演化等关键力学问题,
               耦合近场动力学(peridynamics, PD)和光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)各自的优势,提出了适
               用于水下爆炸冲击模拟的高效           PD-SPH  数值方法。采用    SPH  模拟水下冲击波传播及其流固耦合效应,采用               PD  方法精
               确表征固体结构从弹性变形至渐进损伤破坏的全过程力学行为,建立了非药式水下爆炸冲击波加载装置的                                      PD-SPH  数
               值模型。针对大规模粒子计算效率瓶颈,开发了基于区域分解和数据通信机制的多                              GPU (graphics processing unit) 并行
               计算框架。系统验证和并行效率测试表明,该方法可准确预测冲击波壁面压力和靶体动态变形,成功复现薄板结构的
               典型裂纹扩展模式,并可用于开展复杂夹层板毁伤全过程模拟。在超过                           500  万个粒子的复杂流固耦合场景中,8           卡
               RTX4090  相比单卡  RTX4090  加速比为  4.13,并行效率为   51.6%,实际计算时间可以压缩到近          1 h。同时,多   GPU  并行与
               传统  CPU (central processing unit) 并行相比,加速比可达  9  倍以上。
                  关键词: 光滑粒子流体动力学;近场动力学;水下爆炸;流固耦合;冲击波
                  中图分类号: O383   国标学科代码: 13035   文献标志码: A

                     Modeling and analysis of non-explosive underwater shock loading
                                         using a PD-SPH coupling method


                               1,2
                                          2
                                                       2
                                                                      3
                                                                                       3
                     CHEN Ding , YU Zeyang , YAO Xuehao , ZHOU Zhangtao , WANG Mengyuan , HUANG Dan 2
                           (1. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, Fujian, China;
                       2. College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, Jiangsu, China;
                                  3. China Ship Scientific Research Center, Wuxi 214082, Jiangsu, China)
               Abstract:  The evaluation method of ship’s explosion shock resistance is challenged by some key mechanical problems, such
               as  strong  nonlinear  fluid-structure  coupling,  large-deformation  and  failure  evolution  of  solid  structure.  By  coupling  the
               respective  advantages  of  peridynamics  (PD)  and  smoothed  particle  hydrodynamics  (SPH),  an  efficient  PD-SPH  numerical
               method  suitable  for  underwater  explosion  shock  simulations  was  developed.  The  SPH  method  was  employed  to  simulate
               underwater shock wave propagation and fluid-structure interaction, while the PD method accurately characterized the complete
               mechanical behavior of solid structures from elastic deformation to progressive damage failure. A PD-SPH numerical model
               was established for non-explosive underwater shock loading devices. In the non-ordinary state-based peridynamics (NOSB-
               PD) framework, the Johnson-Cook damage model was introduced. To suppress the occurrence of numerical instability, the
               artificial stiffness form was introduced by increasing the internal constraints between particles. To improve the computational
               efficiency in large-scale simulations, a multi-GPU (graphics processing unit) parallel computing framework based on domain



                 *   收稿日期: 2025-06-17;修回日期: 2025-09-21
                   基金项目: 国家自然科学基金(12302257,12072104);船舶结构安全全国重点实验室开放基金(Naklas2024KF006-K)
                   第一作者: 陈 丁(1992- ),男,博士,副研究员,dingchen@fzu.edu.cn


                                                         011107-1
   96   97   98   99   100   101   102   103   104   105   106