Page 73 - 《爆炸与冲击》2025年第12期
P. 73
第 45 卷 第 12 期 爆 炸 与 冲 击 Vol. 45, No. 12
2025 年 12 月 EXPLOSION AND SHOCK WAVES Dec., 2025
DOI:10.11883/bzycj-2025-0047
高铁接触网铜镁合金材料的率温耦合
变形机理与本构参数 *
王鸿立,曾泽林,苏兴亚,凌 静,梅桂明,梁延祥,敬 霖
(西南交通大学轨道交通运载系统全国重点实验室,四川 成都 610031)
摘要: 为研究高速铁路弓网系统在动态冲击和摩擦温升等服役条件下的力学性能,采用 DF14.205D 电子万能试
验机和分离式霍普金森压杆,测试了应变率 0.001~3 000 s 和温度 293~873 K 范围内高速铁路接触网铜镁合金材料的
−1
单轴压缩力学性能,分析了其应力-应变响应的应变率效应和温度敏感性,揭示了率温耦合作用下铜镁合金材料的压
缩变形机制和微观组织演化规律,并构建了能准确描述其塑性流动行为的动态本构模型。研究表明,接触网铜镁合金
材料在压缩过程中表现出显著的应变率强化和温度软化效应,并且这些效应受到加工硬化、应变率、温度软化等因素
的共同作用;当温度大于 473 K 时,材料的变形主要以温度软化为主导,且温度能促进材料动态回复与动态再结晶过
程;修正后的 Johnson-Cook 模型能够较好地预测该材料的塑性流动应力-应变响应。研究结果可为高速列车弓网系统
服役安全设计和评估提供参考。
关键词: 接触网;铜镁合金;应变率效应;温度敏感性;压缩力学性能;动态本构关系
中图分类号: O347.3 国标学科代码: 13015 文献标志码: A
Rate-temperature coupled deformation mechanism and constitutive
parameters of catenary copper-magnesium alloy
materials for high-speed railway
WANG Hongli, ZENG Zelin, SU Xingya, LING Jing, MEI Guiming, LIANG Yanxiang, JING Lin
(State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
Abstract: With the increasing speed of trains, the impacts of mechanical shock, arc heat, and Joule heat on the high-speed
railway catenary system have become increasingly significant. The coupling effect of high temperature and impact load has
emerged as a key limiting factor for the safe operation of the pantograph-catenary system. This study focuses on copper-
magnesium alloy materials used in the catenary system to address the challenges of dynamic impact and friction-induced heat
generation in high-speed railways. To investigate the mechanical properties of the high-speed railway pantograph-catenary
system under service conditions such as dynamic impact and frictional temperature rise, a DF14.205D electronic universal
testing machine and a split Hopkinson pressure bar were employed. The uniaxial compression mechanical properties of the
−1
−1
copper-magnesium alloy in the catenary were tested over a strain rate range of 0.001 s to 3 000 s and a temperature range of
293 K to 873 K. The strain-rate effect and temperature sensitivity of the stress-strain response were carefully analyzed. The
study also revealed the compression deformation mechanism and the evolution law of the alloy’s microstructure under the
combined influence of strain rate and temperature. Furthermore, a dynamic constitutive model was established to accurately
describe the plastic flow behavior of the material. The findings indicate that during compression, the copper-magnesium alloy
materials exhibit significant strain-rate strengthening and temperature softening effects. These effects result from the combined
* 收稿日期: 2025-02-18;修回日期: 2025-04-16
基金项目: 国家自然科学基金(12122211)
第一作者: 王鸿立(2000- ),男,硕士研究生,holyking0921@163.com
通信作者: 敬 霖(1984- ),男,博士,研究员,博士生导师,jinglin@swjtu.edu.cn
123101-1

