Page 71 - 《爆炸与冲击》2025年第12期
P. 71
第 45 卷 陈飞翔,等: 温压炸药隧道内爆炸结构约束对冲击波及爆炸火团的影响规律 第 12 期
ZHAO X Y, WANG B L, LI X, et al. Shockwave propagation characteristics of thermobaric explosive in an explosion
chamber [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
[9] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI:
10.13465/j.cnki.jvs.2017.05.005.
GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of
Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
[10] 纪玉国, 张国凯, 李干, 等. 坑道内爆炸条件下温压炸药的爆炸特性及其影响因素 [J]. 爆炸与冲击, 2024, 44(3): 032301.
DOI: 10.11883/bzycj-2023-0011.
JI Y G, ZHANG G K, LI G, et al. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the
related influential factors [J]. Explosion and Shock Waves, 2024, 44(3): 032301. DOI: 10.11883/bzycj-2023-0011.
[11] GOGULYA M F, BRAZHNIKOV M A. Pressure and temperature of the detonation products of explosive materials
containing aluminum of various dispersities [J]. Russian Journal of Physical Chemistry B, 2010, 4(5): 773–787. DOI: 10.1134/
S19907.93110050131.
[12] MAIZ L, TRZCIŃSKI W A, PASZULA J. Optical spectroscopy to study confined and semi-closed explosions of
homogeneous and composite charges [J]. Optics and Lasers in Engineering, 2017, 88: 111–119. DOI: 10.1016/j.optlaseng.
2016.08.006.
[13] 闫潇敏, 苏健军, 李芝绒, 等. 坑道内温压炸药的爆炸热效应研究 [J]. 火工品, 2015(1): 22–25. DOI: 10.3969/j.issn.1003-
1480.2015.01.006.
YAN X M, SU J J, LI Z R, et al. Experimental study on explosive thermal effect of thermal-baric explosives in tunnel [J].
Initiators and Pyrotechnics, 2015(1): 22–25. DOI: 10.3969/j.issn.1003-1480.2015.01.006.
[14] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R].
Livermore: University of California Radiation Laboratory at Lawrence, 1968. DOI: 10.2172/4783904.
[15] 曹同堂, 周霖, 张向荣, 等. DNAN 基熔铸炸药 JWL 状态方程参数的预估方法 [J]. 北京理工大学学报, 2017, 37(2): 141–
145. DOI: 10.15918/j.tbit1001-0645.2017.02.006.
CAO T T, ZHOU L, ZHANG X R, et al. A method to predict JWL equation of state parameters for DNAN based melt-cast
explosives [J]. Transactions of Beijing Institute of Technology, 2017, 37(2): 141–145. DOI: 10.15918/j.tbit1001-0645.2017.
02.006.
[16] 陈朗, 冯长根, 赵玉华, 等. 含铝炸药爆轰数值模拟研究 [J]. 北京理工大学学报, 2001, 21(4): 415–419. DOI: 10.3969/
j.issn.1001-0645.2001.04.003.
CHEN L, FENG C G, ZHAO Y H, et al. Numerical simulations of the detonation of aluminized explosives [J]. Transactions of
Beijing Institute of Technology, 2001, 21(4): 415–419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.
[17] 薛再清, 徐更光, 王廷增, 等. 用修正的 KHT 状态方程预报炸药爆轰性能 [J]. 北京理工大学学报, 1998, 18(3): 269–273.
XUE Z Q, XU G G, WANG T Z, et al. Using revised KHT equation of state to predict explosives’ detonation property [J].
Journal of Beijing Institute of Technology, 1998, 18(3): 269–273.
[18] 项大林, 荣吉利, 李健, 等. 基于 KHT 程序的 RDX 基含铝炸药 JWL 状态方程参数预测研究 [J]. 北京理工大学学报,
2013, 33(3): 239–243. DOI: 10.3969/j.issn.1001-0645.2013.03.005.
XIANG D L, RONG J L, LI J, et al. JWL equation of state parameters prediction of RDX-based aluminized explosive based
on KHT code [J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 239–243. DOI: 10.3969/j.issn.1001-0645.2013.
03.005.
[19] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/
CJEM2018305.
ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J].
Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
[20] BIDABADI M, POORFAR A K, WANG S B, et al. A comparative study of different burning time models for the combustion
of aluminum dust particles [J]. Applied Thermal Engineering, 2016, 105: 474–482. DOI: 10.1016/j.applthermaleng.2016.
03.022.
122202-15

