Page 107 - 《爆炸与冲击》2025年第12期
P. 107

第 45 卷                 陈军红,等: 铱合金在高温下的动态拉伸力学性能                                 第 12 期

                    6051.2012.10.021.
                    LI Z F, ZHANG H L, TANG H P, et al. Oxidating behavior of iridium alloys at high temperature [J]. Heat Treatment of
                    Metals, 2012, 37(10): 12–16. DOI: 10.13251/j.issn.0254-6051.2012.10.021.
               [3]   方镇, 王鑫, 张毅勇, 等. 铱及铱合金涂层的研究现状与展望 [J]. 稀有金属, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.
                    cjrm.XY22120004.
                    FANG Z, WANG X, ZHANG Y Y, et al. Research status and prospects of Ir and Ir-alloy coatings [J]. Chinese Journal of Rare
                    Metals, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.cjrm.XY22120004.
               [4]   潘新东, 魏燕, 蔡宏中, 等. 铱及铱基合金多元化研究进展 [J]. 稀有金属材料与工程, 2018, 47(2): 711–716.
                    PAN X D, WEI Y, CAI H Z, et al. Progress in research on the diversification of iridium and iridium based alloys [J]. Rare
                    Metal Materials and Engineering, 2018, 47(2): 711–716.
               [5]   向长淑, 葛渊, 张晗亮, 等. 耐超高温铱合金强韧化技术研究进展 [J]. 材料导报, 2009, 23(7): 7–10.
                    XIANG C S, GE Y, ZHANG H L, et al. Research progress in strengthening and toughening technology of iridium alloys for
                    ultra-high temperature application [J]. Materials Review, 2009, 23(7): 7–10.
               [6]   庄严, 陈敬超, 吕连灏. 第一性原理研究铱基高温合金增韧机理 [J]. 材料导报, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.
                    1005-023X.2014.22.032.
                    ZHUANG Y, CHEN J C, LÜ L H. First-principles study on toughening mechanisms of iridium-base super alloy [J]. Materials
                    Review, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.1005-023X.2014.22.032.
               [7]   李增峰, 葛渊, 李爱君, 等. Ir-W-Th  铱合金的压力加工硬化 [J]. 金属热处理, 2016, 41(3): 151–154. DOI: 10.13251/j.issn.0254-
                    6051.2016.03.033.
                    LI Z F, GE Y, LI A J, et al. Work hardening of Ir-W-Th iridium alloy [J]. Heat Treatment of Metals, 2016, 41(3): 151–154.
                    DOI: 10.13251/j.issn.0254-6051.2016.03.033.
               [8]   吴胜娜, 罗洪义, 武伟名, 等. 再入过程中的同位素热源可靠性评估 [J]. 原子能科学技术, 2020, 54(2): 215–221. DOI:
                    10.7538/yzk.2020.54.02.0215.
                    WU S N, LUO H Y, WU W M, et al. Reliability evaluation of radioisotope heat unit in reentry process [J]. Atomic Energy
                    Science and Technology, 2020, 54(2): 215–221. DOI: 10.7538/yzk.2020.54.02.0215.
               [9]   李尚昆, 胡文军, 徐伟芳, 等. 高温霍普金森拉杆实验技术研究进展 [J]. 中国测试, 2018, 44(10): 35–42. DOI: 10.11857/
                    j.issn.1674-5124.2018.10.006.
                    LI  S  K,  HU  W  J,  XU  W  F,  et  al.  Research  progress  on  SHTB  experiment  technique  at  elevated  temperature  [J].  China
                    Measurement & Test, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.
               [10]   张方举, 谢若泽, 胡文军, 等. 一种改进的金属材料的高温动态拉伸实验技术 [J]. 实验力学, 2011, 26(6): 750–754.
                    ZHANG F J, XIE R Z, HU W J, et al. An improved high temperature dynamical tensile experimental technique for metal
                    materials [J]. Journal of Experimental Mechanics, 2011, 26(6): 750–754.
               [11]   SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature testing of an iridium alloy in compression at high-strain
                    rates [J]. Strain, 2014, 50(6): 539–546. DOI: 10.1111/str.12100.
               [12]   SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature tensile characterization of an iridium alloy with Kolsky
                    tension bar techniques [J]. Journal of Dynamic Behavior of Materials, 2015, 1(3): 290–298. DOI: 10.1007/s40870-015-0022-6.
               [13]   李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的               Hopkinson  杆系统 [J]. 爆炸与冲击, 2005, 25(6):
                    487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
                    LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain
                    rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-
                    06.
               [14]   ZHANG C, GUAN T H, REN T F, et al. Influences of SiC infiltration and coating on compressive mechanical behaviours of
                    2DC/SiC composites up to 1 600 ℃ at wide-ranging strain rates [J]. Journal of the European Ceramic Society, 2022, 42(9):
                    3787–3801. DOI: 10.1016/j.jeurceramsoc.2022.02.042.
               [15]   WANG J J, GUO W G, LI P H, et al. Dynamic tensileproperties of a single crystal nickel-base superalloy at hightemperatures
                    measured with an improved SHTB technique [J]. Materials Science andEngineering: A, 2016, 670: 1–8. DOI: 10.1016/j.msea.


                                                         123103-9
   102   103   104   105   106   107   108   109   110   111   112