Page 4 - 《爆炸与冲击》2025年第9期
P. 4

第 45 卷    第 9 期                   爆    炸    与    冲    击                       Vol. 45, No. 9
                2025 年 9 月                    EXPLOSION AND SHOCK WAVES                          Sept., 2025

               DOI:10.11883/bzycj-2024-0232


                     航行体高速入水时多孔泡沫的缓冲降载特性                                                           *


                                              原    凯 ,吴琪衡 ,孙铁志 ,杨娜娜        1
                                                   1,2
                                                                   3
                                                            3
                                      (1. 哈尔滨工程大学船舶工程学院,黑龙江 哈尔滨 150001;
                                            2. 北京宇航系统工程研究所,北京 100076;
                                         3. 大连理工大学船舶工程学院,辽宁 大连 116024)


                  摘要: 针对航行体高速入水时的缓冲降载问题,设计了适用的缓冲头罩及多种开孔形式的缓冲泡沫构型,基于任
               意拉格朗日-欧拉方法,建立了航行体高速入水缓冲降载数值计算模型,并通过数值模拟对不同开孔形式的缓冲泡沫
               的降载性能进行了深入研究。结果表明:多孔缓冲泡沫在分散航行体入水冲击力及吸收冲击能量方面表现出显著优
               势,具有更好的缓冲效果;同时,缓冲头罩在入水时会发生局部渐进破碎,缓冲罩壳与航行体之间的连接器处的缓冲头
               罩外壁面的变形和破裂是由于撞水时产生的应力集中分布引起的;多孔泡沫接触水面时,前端部分会进入坍塌阶段,
               吸收大量能量并产生塑性变形,孔隙减少,此阶段为缓冲泡沫的主要能量吸收阶段;相比之下,不开孔泡沫的降载性能
               较差。因此,采用多孔泡沫是一种更优的航行体高速入水缓冲降载方案。
                  关键词: 高速入水;缓冲降载;能量吸收;多孔泡沫
                  中图分类号: O368   国标学科代码: 13025   文献标志码: A

                        Study on load reduction characteristics of porous foam buffer
                                        for high-speed water entry vehicle

                                                           3
                                               1,2
                                                                      3
                                      YUAN Kai , WU Qiheng , SUN Tiezhi , YANG Nana 1
                    (1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China;
                                2. Beijing Institute of Astronantical System Engineering, Beijing 100076, China;
                     3. College of Shipbuilding Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China)

               Abstract:   Applicable  buffer-head  covers  and  various  open-cell  foam  buffer  configurations  were  designed  to  meet  the
               buffering and load reduction challenges during high-speed water entry vehicles. In the arbitrary Lagrangian-Euler method, the
               grid can move as the material flows within the spatial grid. This unique feature allows the arbitrary Lagrangian-Euler method to
               harness the advantages of both the Lagrangian and Euler methods. It not only overcomes numerical calculation challenges
               stemming from element distortion but also facilitates accurate computation of large deformations and displacements in solids
               and fluids. This makes it particularly well-suited for addressing high-speed water buffer load reduction problems. Based on the
               arbitrary  Lagrangian-Euler  method  and  considering  the  large  deformation  of  the  buffer  foam  and  the  hood,  a  numerical
               calculation  model  for  buffering  and  load  reduction  during  high-speed  water  entry  of  navigational  bodies  was  established.
               Through  numerical  simulations,  an  in-depth  study  was  conducted  on  the  load  reduction  performance  of  buffer  foams  with
               different open-cell patterns. The results indicate that open-cell buffer foam exhibits significant advantages in dispersing the
               impact  force  and  absorbing  impact  energy  during  water  entry  of  navigational  bodies,  offering  better  buffering  effects.
               Simultaneously,  the  buffer  head  cover  experiences  local  progressive  fragmentation  upon  water  entry.  The  deformation  and



                 *   收稿日期: 2024-07-12;修回日期: 2024-09-19
                   基金项目: 基础科研计划项目(JCKY2021203B003)
                   第一作者: 原 凯(1989- ),男,博士研究生,高级工程师,beihangkai@126.com
                   通信作者: 杨娜娜(1980- ),女,博士,教授,博士生导师,yangnana@hrbeu.edu.cn


                                                         091001-1
   1   2   3   4   5   6   7   8   9