Page 156 - 《爆炸与冲击》2025年第6期
P. 156
第 45 卷 陶 明,等: 不同倾角充填节理对岩石爆破块度的影响 第 6 期
DOI: 10.1002/nag.2897.
*
[41] SCHWER L E, JAVIER MALVAR L. Simplified concrete modeling with mat_concrete_damage_rel3 [R]. Nagoya: JRI LS-
Dyna User Week, 2005: 49−60.
[42] KRISTOFFERSEN M, PETTERSEN J E, AUNE V, et al. Experimental and numerical studies on the structural response of
normal strength concrete slabs subjected to blast loading [J]. Engineering Structures, 2018, 174: 242–255. DOI: 10.1016/j.
engstruct.2018.07.022.
[43] REN L, YU X M, ZHENG M X, et al. Evaluation of typical dynamic damage models used for UHPC based on SHPB
technology [J]. Engineering Fracture Mechanics, 2022, 269: 108562. DOI: 10.1016/j.engfracmech.2022.108562.
[44] MENG Q F, WU C Q, SU Y, et al. Experimental and numerical investigation of blast resistant capacity of high performance
geopolymer concrete panels [J]. Composites Part B: Engineering, 2019, 171: 9–19. DOI: 10.1016/j.compositesb.2019.04.010.
[45] LIU K W, LI X D, HAO H, et al. Study on the raising technique using one blast based on the combination of long-hole
presplitting and vertical crater retreat multiple-deck shots [J]. International Journal of Rock Mechanics and Mining Sciences,
2019, 113: 41–58. DOI: 10.1016/j.ijrmms.2018.11.012.
[46] ZHAO R, TAO M, WU C Q, et al. Study on size and load rate effect of dynamic fragmentation and mechanical properties of
marble sphere [J]. Engineering Failure Analysis, 2022, 142: 106814. DOI: 10.1016/j.engfailanal.2022.106814.
[47] AZIZABADI H R M, MANSOURI H, FOUCHÉ O. Coupling of two methods, waveform superposition and numerical, to
model blast vibration effect on slope stability in jointed rock masses [J]. Computers and Geotechnics, 2014, 61: 42–49. DOI:
10.1016/j.compgeo.2014.04.008.
[48] HEALY D, RIZZO R E, CORNWELL D G, et al. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns [J].
Journal of Structural Geology, 2017, 95: 1–16. DOI: 10.1016/j.jsg.2016.12.003.
[49] ZHAO H T, TAO M, LI X B, et al. Estimation of spalling strength of sandstone under different pre-confining pressure by
experiment and numerical simulation [J]. International Journal of Impact Engineering, 2019, 133: 103359. DOI: 10.1016/j.
ijimpeng.2019.103359.
[50] FAN L F, JIA L, WANG M. Evaluation of the displacement discontinuity method on wave propagation through a thickly
jointed rock mass [J/OL]. Waves in Random and Complex Media, 2023: 1–14. DOI: 10.1080/17455030.2023.2169388.
[51] YANG H, DUAN H F, ZHU J B. Experimental study on the role of clay mineral and water saturation in ultrasonic P-wave
behaviours across individual filled rock joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 168:
105393. DOI: 10.1016/j.ijrmms.2023.105393.
[52] WANG R, HU Z P, ZHANG D, et al. Propagation of the stress wave through the filled joint with linear viscoelastic
deformation behavior using time-domain recursive method [J]. Rock Mechanics and Rock Engineering, 2017, 50(12):
3197–3207. DOI: 10.1007/s00603-017-1301-4.
[53] BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation [J]. International Journal of Rock
Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6): 249–268. DOI: 10.1016/0148-9062(83)90595-8.
(责任编辑 王小飞)
061432-16