Page 154 - 《爆炸与冲击》2025年第6期
P. 154

第 45 卷               陶    明,等: 不同倾角充填节理对岩石爆破块度的影响                               第 6 期

               [3]   WANG Z L, KONIETZKY H, SHEN R F. Coupled finite element and discrete element method for underground blast in
                    faulted  rock  masses  [J].  Soil  Dynamics  and  Earthquake  Engineering,  2009,  29(6):  939–945.  DOI:  10.1016/j.soildyn.2008.
                    11.002.
               [4]   DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed
                    rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43: 88–100. DOI: 10.1016/j.tust.2014.04.004.
               [5]   DU  J  H,  HUANG  X  L,  YANG  G  X,  et  al.  UDEC  modelling  on  dynamic  response  of  rock  masses  with  joint  stiffness
                    weakening  attributed  to  particle  crushing  of  granular  fillings  [J].  Rock  Mechanics  and  Rock  Engineering,  2023,  56(3):
                    1823–1841. DOI: 10.1007/s00603-022-03181-3.
               [6]   LI X F, LI H B, LI J C, et al. Research on transient wave propagation across nonlinear joints filled with granular materials [J].
                    Rock Mechanics and Rock Engineering, 2018, 51(8): 2373–2393. DOI: 10.1007/s00603-018-1471-8.
               [7]   HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock
                    specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining
                    Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
               [8]   CHAI L Z, CHAI S B, LI P, et al. Analysis of P-wave propagation in filled jointed rock mass with viscoelastic properties [J].
                    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 102. DOI: 10.1007/s40948-023-00642-z.
               [9]   LI J C, MA G W. Analysis of blast wave interaction with a rock joint [J]. Rock Mechanics and Rock Engineering, 2010, 43(6):
                    777–787. DOI: 10.1007/s00603-009-0062-0.
               [10]   LI J C, RONG L F, LI H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses [J]. Rock
                    Mechanics and Rock Engineering, 2019, 52(2): 403–420. DOI: 10.1007/s00603-018-1586-y.
               [11]   LI J C, LI N N, LI H B, et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of
                    joint [J]. International Journal of Impact Engineering, 2017, 105: 109–116. DOI: 10.1016/j.ijimpeng.2016.12.011.
               [12]   WANG  W,  HAO  H,  LI  X,  et  al.  Effects  of  a  single  open  joint  on  energy  transmission  coefficients  of  stress  waves  with
                    different waveforms [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2157–2166.
               [13]   JIANG X D, XUE Y G, KONG F M, et al. Dynamic responses and damage mechanism of rock with discontinuity subjected to
                    confining stresses and blasting loads [J]. International Journal of Impact Engineering, 2023, 172: 104404. DOI: 10.1016/j.
                    ijimpeng.2022.104404.
               [14]   YANG R S, DING C X, YANG L Y, et al. Model experiment on dynamic behavior of jointed rock mass under blasting at
                    high-stress  conditions  [J].  Tunnelling  and  Underground  Space  Technology,  2018,  74:  145–152.  DOI:  10.1016/j.tust.2018.
                    01.017.
               [15]   YU R G, ZHANG Z H, GAO W L, et al. Numerical simulation of rock mass blasting vibration using particle flow code and
                    particle  expansion  loading  algorithm  [J].  Simulation  Modelling  Practice  and  Theory,  2023,  122:  102686.  DOI:  10.1016/j.
                    simpat.2022.102686.
               [16]   ZHU F, ZHAO J D. Peridynamic modelling of blasting induced rock fractures [J]. Journal of the Mechanics and Physics of
                    Solids, 2021, 153: 104469. DOI: 10.1016/j.jmps.2021.104469.
               [17]   KARMAKAR S, SHAW A. Response of R. C. plates under blast loading using FEM-SPH coupled method [J]. Engineering
                    Failure Analysis, 2021, 125: 105409. DOI: 10.1016/j.engfailanal.2021.105409.
               [18]   GHAREHDASH  S,  BARZEGAR  M,  PALYMSKIY  I  B,  et  al.  Blast  induced  fracture  modelling  using  smoothed  particle
                    hydrodynamics [J]. International Journal of Impact Engineering, 2020, 135: 103235. DOI: 10.1016/j.ijimpeng.2019.02.001.
               [19]   HAO H, WU Y K, MA G W, et al. Characteristics of surface ground motions induced by blasts in jointed rock mass [J]. Soil
                    Dynamics and Earthquake Engineering, 2001, 21(2): 85–98. DOI: 10.1016/S0267-7261(00)00104-4.
               [20]   JHANWAR J C, JETHWA J L, REDDY A H. Influence of air-deck blasting on fragmentation in jointed rocks in an open-pit
                    manganese mine [J]. Engineering Geology, 2000, 57(1/2): 13–29. DOI: 10.1016/S0013-7952(99)00125-8.
               [21]   XIE X K, LI J C, ZHENG Y L. Experimental study on dynamic mechanical and failure behavior of a jointed rock mass [J].
                    International Journal of Rock Mechanics and Mining Sciences, 2023, 168: 105415. DOI: 10.1016/j.ijrmms.2023.105415.
               [22]   WANG  Z  L,  KONIETZKY  H.  Modelling  of  blast-induced  fractures  in  jointed  rock  masses  [J].  Engineering  Fracture
                    Mechanics, 2009, 76(12): 1945–1955. DOI: 10.1016/j.engfracmech.2009.05.004.
               [23]   ZHU J B. Theoretical and numerical analyses of wave propagation in jointed rock masses [D]. 2011. DOI: 10.5075/epfl-thesis-
                    5130.


                                                         061432-14
   149   150   151   152   153   154   155   156   157   158   159