Page 75 - 《爆炸与冲击》2025年第5期
P. 75
第 45 卷 汤长兴,等: 钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测 第 5 期
[11] 刘佳, 崔传安, 徐畅. 爆炸波在硬质聚氨酯泡沫中的衰减特性模拟 [J]. 兵器装备工程学报, 2017, 38(9): 164–167. DOI:
10.11809/scbgxb2017.09.035.
LIU J, CUI C A, XU C. Simulation of explosive wave attenuation characteristics in rigid polyurethane foam [J]. Journal of
Ordnance Equipment Engineering, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.
[12] LIU Z D, ZHAO X H, FANG H Y, et al. Investigation on the damage features and dynamic response of reinforced concrete
slabs with polyurethane sacrificial cladding under close-range explosions [J]. Construction and Building Materials, 2023, 395:
132149. DOI: 10.1016/J.CONBUILDMAT.2023.132149.
[13] 孔祥清, 李若男, 常雅慧, 等. 泡沫填充负泊松比蜂窝夹层结构的抗爆性能数值模拟 [J]. 兵工学报, 2024, 45(9):
3091–3104. DOI: 10.12382/bgxb.2023.0607.
KONG X Q, LI R N, CHANG Y H, et al. Numerical simulation of blast resistance of foam-filled Auxetic honeycomb
sandwich structures [J]. Acta Armamentarii, 2024, 45(9): 3091–3104. DOI: 10.12382/bgxb.2023.0607.
[14] CAO K L, FU Q F, ZHANG J W, et al. Study on the protection mechanism and damage grade prediction of different
corrugated steel-concrete composite structures under underwater contact explosion [J]. Ocean Engineering, 2024, 292: 116520.
DOI: 10.1016/J.OCEANENG.2023.116520.
[15] YU S Y, WU H X, ZHANG G K, et al. Experimental study on anti-shallow-buried-explosion capacity of a corrugated steel-
plain concrete composite structure [J]. International Journal of Impact Engineering, 2023, 172: 104393. DOI: 10.1016/J.
IJIMPENG.2022.104393.
[16] 赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1):
014102. DOI: 10.11858/gywlxb.20230727.
ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-infilled double steel corrugated-plate
wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.
20230727.
[17] KUŠTER MARIĆ M, IVANOVIĆ A, FUSIĆ M, et al. Experimental investigation of the explosion effects on reinforced
concrete slabs with fibers [J]. Buildings, 2024, 14(4): 1080. DOI: 10.3390/BUILDINGS14041080.
[18] 袁名正, 潘腾, 卞晓兵, 等. 曲面型纤维复材防护掩体在爆炸冲击波下的响应特性 [J]. 兵工学报, 2023, 44(12): 3909–3920.
DOI: 10.12382/bgxb.2023.0735.
YUAN M Z, PAN T, BIAN X B, et al. Response characteristics of curved fiber composite protective shelter under the action
of explosive shock wave [J]. Acta Armamentarii, 2023, 44(12): 3909–3920. DOI: 10.12382/bgxb.2023.0735.
[19] ZHAO X H, SUN J S, ZHAO H N, et al. Experimental and mesoscopic modeling numerical researches on steel fiber
reinforced concrete slabs under contact explosion [J]. Structures, 2024, 61: 106114. DOI: 10.1016/J.ISTRUC.2024.106114.
[20] 曹克磊. 钢纤维增强多孔混凝土复合材料静动态力学特性及其水下抗爆防护效果研究 [D]. 天津: 天津大学, 2020:
1–177. DOI: 10.27356/d.cnki.gtjdu.2020.003413.
CAO K L. Research on the static and dynamic mechanical characteristics of steel fiber reinforced cellular concrete composites
and its underwater anti-explosion protection effects [D]. Tianjin: Tianjin University, 2020: 1–177. DOI: 10.27356/d.cnki.gtjdu.
2020.003413.
[21] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI:
10.11883/bzycj-2020-0194.
GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J].
Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
[22] HAI L, REN X D. Computational investigation on damage of reinforced concrete slab subjected to underwater explosion [J].
Ocean Engineering, 2020, 195: 106671. DOI: 10.1016/j.oceaneng.2019.106671.
[23] ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast
loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337.
[24] PAN Z F, ZHANG H P, ZENG B, et al. Statistical evaluation of CEB-FIP 2010 model for concrete creep and shrinkage [J].
Materials, 2023, 16(4): 1576. DOI: 10.3390/MA16041576.
[25] 尹华伟, 蒋轲, 张料, 等. 钢纤维混凝土板在冲击与爆炸荷载下的 K&C 模型 [J]. 高压物理学报, 2020, 34(3): 034205. DOI:
053201-15