Page 157 - 《爆炸与冲击》2025年第5期
P. 157

第 45 卷              康普林,等: 考虑药包爆破动-静时序作用的漏斗形成机理                                 第 5 期

                    ZHANG Z Y, CHEN C C, HUANG Y H, et al. Construction and validation for the model of bulging movement in explosion [J].
                    Transactions of Beijing Institute of Technology, 2020, 40(8): 810–817. DOI: 10.15918/j.tbit1001-0645.2019.219.
               [7]   李祥龙, 胡涛, 张智宇, 等. 基于高速摄影技术爆破鼓包运动规律的研究 [J]. 北京理工大学学报, 2015, 35(12): 1228–1232.
                    DOI: 10.15918/j.tbit1001-0645.2015.12.004.
                    LI  X  L,  HU  T,  ZHANG  Z  Y,  et  al.  Bulging  movement  in  explosion  based  on  high  speed  photography  technology  [J].
                    Transactions of Beijing Institute of Technology, 2015, 35(12): 1228–1232. DOI: 10.15918/j.tbit1001-0645.2015.12.004.
               [8]   ZHANG F P, YAN G L, YANG Q B, et al. Strain field evolution characteristics of free surface during crater blasting in
                    sandstone under high stress [J]. Applied Sciences, 2020, 10(18): 6285. DOI: 10.3390/app10186285.
               [9]   YAN G L, ZHANG F P, KU T, et al. Experimental study on failure mechanism and geometric parameters of blasting crater
                    under uniaxial static compressive stresses [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(6): 251. DOI:
                    10.1007/s10064-022-02714-y.
               [10]   PAN D, ZHOU K P, LI N, et al. The optimization research on large-diameter longhole blasting parameters of underground
                    mine based on artificial neural network [C]//Proceedings of 2009 Second International Conference on Intelligent Computation
                    Technology and Automation. Changsha: IEEE, 2009, 1: 419–422. DOI: 10.1109/ICICTA.2009.109.
               [11]   冯春, 李世海, 郑炳旭, 等. 基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟 [J]. 爆炸与冲击, 2019,
                    39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
                    FENG C, LI S H, ZHENG B X, et al. Numerical simulation on complete process of three-dimensional bench blasting in an
                    open-pit mine based on CDEM [J]. Explosion and Shock Waves, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
               [12]   HU  Y  G,  LU  W  B,  CHEN  M,  et  al.  Numerical  simulation  of  the  complete  rock  blasting  response  by  SPH-DAM-FEM
                    approach [J]. Simulation Modelling Practice and Theory, 2015, 56: 55–68. DOI: 10.1016/j.simpat.2015.04.001.
               [13]   YU R G, ZHANG Z H, GAO W L, et al. Numerical simulation of rock mass blasting vibration using particle flow code and
                    particle  expansion  loading  algorithm  [J].  Simulation  Modelling  Practice  and  Theory,  2023,  122:  102686.  DOI:  10.1016/j.
                    simpat.2022.102686.
               [14]   GAO W L, ZHANG Z H, LI B J, et al. Study on numerical simulation of geometric elements of blasting funnel based on
                    PFC5.0 [J]. Shock and Vibration, 2021, 2021(1): 8812964. DOI: 10.1155/2021/8812964.
               [15]   ZHANG Z H, GAO W L, LI K P, et al. Numerical simulation of rock mass blasting using particle flow code and particle
                    expansion  loading  algorithm  [J].  Simulation  Modelling  Practice  and  Theory,  2020,  104:  102119.  DOI:  10.1016/j.simpat.
                    2020.102119.
               [16]   傅鹏. 岩体结构面对台阶爆破效果影响研究 [J]. 爆破, 2023, 40(1): 77–84. DOI: 10.3963/j.issn.1001-487X.2023.01.011.
                    FU P. Influence of rock mass structure on bench blasting effect [J]. Blasting, 2023, 40(1): 77–84. DOI: 10.3963/j.issn.1001-
                    487X.2023.01.011.
               [17]   赵毅波, 苏都都, 范勇, 等. 群孔起爆不同短延迟时间岩石破裂过程仿真与块度分析 [J]. 爆破, 2023, 40(3): 92–100, 122.
                    DOI: 10.3963/j.issn.1001-487X.2023.03.013.
                    ZHAO Y B, SU D D, FAN Y, et al. Simulation of rock fracture process and fragmentation analysis with different short delays
                    for group hole blasting [J]. Blasting, 2023, 40(3): 92–100, 122. DOI: 10.3963/j.issn.1001-487X.2023.03.013.
               [18]   XIA M, ZHOU K P. Particle simulation of the failure process of brittle rock under triaxial compression [J]. International
                    Journal of Minerals, Metallurgy, and Materials, 2010, 17(5): 507–513. DOI: 10.1007/s12613-010-0350-4.
               [19]   POTYONDY  D  O.  Simulating  stress  corrosion  with  a  bonded-particle  model  for  rock  [J].  International  Journal  of  Rock
                    Mechanics and Mining Sciences, 2007, 44(5): 677–691. DOI: 10.1016/j.ijrmms.2006.10.002.
               [20]   YANG J X, SHI C, YANG W K, et al. Numerical simulation of column charge explosive in rock masses with particle flow
                    code [J]. Granular Matter, 2019, 21(4): 96. DOI: 10.1007/s10035-019-0950-2.
               [21]   AN L, SUORINENI F T, XU S, et al. A feasibility study on confinement effect on blasting performance in narrow vein mining
                    through  numerical  modelling  [J].  International  Journal  of  Rock  Mechanics  and  Mining  Sciences,  2018,  112:  84–94.  DOI:
                    10.1016/j.ijrmms.2018.10.010.
               [22]   HAGAN  T  N.  Rock  breakage  by  explosives  [M]//OPPENHEIM  A  K.  Gasdynamics  of  Explosions  and  Reactive  Systems.
                    Oxford: Pergamon, 1980: 329–340. DOI: 10.1016/B978-0-08-025442-5.50034-2.


                                                         055201-15
   152   153   154   155   156   157   158   159   160   161   162