Page 62 - 《爆炸与冲击》2023年第2期
P. 62
第 43 卷 李国强,等: 冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究 第 2 期
[4] 郭弦. 冲击作用下混凝土中应力波传播规律研究 [D]. 长沙: 国防科学技术大学, 2010.
GUO X. Stress wave propagation in concrete structure under impact loading [D]. Changsha, Hunan, China: National
University of Defense Technology, 2010.
[5] 巫绪涛, 廖礼. 脆性材料中应力波衰减规律与层裂实验设计的数值模拟 [J]. 爆炸与冲击, 2017, 37(4): 705–711. DOI:
10.11883/1001-1455(2017)04-0705-07.
WU X T, LIAO L. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design [J].
Explosion and Shock Waves, 2017, 37(4): 705–711. DOI: 10.11883/1001-1455(2017)04-0705-07.
[6] 俞鑫炉, 付应乾, 董新龙, 等. 混凝土一维应力层裂实验的全场 DIC 分析 [J]. 力学学报, 2019, 51(4): 1064–1072. DOI:
10.6052/0459-1879-19-008.
YU X L, FU Y Q, DONG X L, et al. Full field DIC analysis of one-dimensional spall strength for concrete [J]. Chinese
Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.
[7] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI:
10.1126/science.289.5485.1734.
[8] LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005,
71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
[9] MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal
of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
[10] MITCHELL S J, PANDOLFI A, ORTIZ M. Investigation of elastic wave transmission in a metaconcrete slab [J]. Mechanics
of Materials, 2015, 91: 295–303. DOI: 10.1016/j.mechmat.2015.08.004.
[11] 张恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应 [J]. 爆炸与冲击, 2020, 40(6): 063301. DOI:
10.11883/bzycj-2019-0252.
ZHANG E, LU G Y, YANG H W, et al. Band gap features of metaconcrete and shock wave attenuation in it [J]. Explosion
and Shock Waves, 2020, 40(6): 063301. DOI: 10.11883/bzycj-2019-0252.
[12] JIN H X, HAO H, HAO Y F, et al. Predicting the response of locally resonant concrete structure under blast load [J].
Construction and Building Materials, 2020, 252: 118920. DOI: 10.1016/j.conbuildmat.2020.118920.
[13] XU C, CHEN W, HAO H, et al. Static mechanical properties and stress wave attenuation of metaconcrete subjected to
impulsive loading [J]. Engineering Structures, 2022, 263: 114382. DOI: 10.1016/j.engstruct.2022.114382.
[14] OYELADE A, ABIODUN Y, SADIQ M O. Dynamic behaviour of concrete containing aggregate resonant frequency [J].
Journal of Computational Applied Mechanics, 2018, 49(2): 380–385. DOI: 10.22059/JCAMECH.2018.269048.339.
[15] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International
Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
[16] LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16):
165116. DOI: 10.1103/PhysRevB.65.165116.
[17] 吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602.
DOI: 10.7498/aps.65.064602.
WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally
resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
[18] EURO C. CEB-FIP model code 1990 [Z]. Lausanne, Switzerland: Thomas TelFord Sevices Ltd., 1993. DOI: 10.1680/ceb-
fipmc1990.35430.
[19] MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete [R]. Port Hueneme CA: Naval Facilities Engineering
Service Center, 1998.
[20] LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014,
68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.
[21] WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of
concrete [J]. International Journal of Impact Engineering, 2005, 32(1): 605–617. DOI: 10.1016/j.ijimpeng.2005.05.008.
(责任编辑 蔡国艳)
023201-15