Page 62 - 《爆炸与冲击》2023年第2期
P. 62

第 43 卷          李国强,等: 冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究                                第 2 期

               [4]  郭弦. 冲击作用下混凝土中应力波传播规律研究 [D]. 长沙: 国防科学技术大学, 2010.
                    GUO  X.  Stress  wave  propagation  in  concrete  structure  under  impact  loading  [D].  Changsha,  Hunan,  China:  National
                    University of Defense Technology, 2010.
               [5]  巫绪涛, 廖礼. 脆性材料中应力波衰减规律与层裂实验设计的数值模拟 [J]. 爆炸与冲击, 2017, 37(4): 705–711. DOI:
                    10.11883/1001-1455(2017)04-0705-07.
                    WU X T, LIAO L. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design [J].
                    Explosion and Shock Waves, 2017, 37(4): 705–711. DOI: 10.11883/1001-1455(2017)04-0705-07.
               [6]  俞鑫炉, 付应乾, 董新龙, 等. 混凝土一维应力层裂实验的全场               DIC  分析 [J]. 力学学报, 2019, 51(4): 1064–1072. DOI:
                    10.6052/0459-1879-19-008.
                    YU X L, FU Y Q, DONG X L, et al. Full field DIC analysis of one-dimensional spall strength for concrete [J]. Chinese
                    Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.
               [7]  LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI:
                    10.1126/science.289.5485.1734.
               [8]  LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005,
                    71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
               [9]  MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal
                    of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
               [10]  MITCHELL S J, PANDOLFI A, ORTIZ M. Investigation of elastic wave transmission in a metaconcrete slab [J]. Mechanics
                    of Materials, 2015, 91: 295–303. DOI: 10.1016/j.mechmat.2015.08.004.
               [11]  张恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应 [J]. 爆炸与冲击, 2020, 40(6): 063301. DOI:
                    10.11883/bzycj-2019-0252.
                    ZHANG E, LU G Y, YANG H W, et al. Band gap features of metaconcrete and shock wave attenuation in it [J]. Explosion
                    and Shock Waves, 2020, 40(6): 063301. DOI: 10.11883/bzycj-2019-0252.
               [12]  JIN  H  X,  HAO  H,  HAO  Y  F,  et  al.  Predicting  the  response  of  locally  resonant  concrete  structure  under  blast  load  [J].
                    Construction and Building Materials, 2020, 252: 118920. DOI: 10.1016/j.conbuildmat.2020.118920.
               [13]  XU  C,  CHEN  W,  HAO  H,  et  al.  Static  mechanical  properties  and  stress  wave  attenuation  of  metaconcrete  subjected  to
                    impulsive loading [J]. Engineering Structures, 2022, 263: 114382. DOI: 10.1016/j.engstruct.2022.114382.
               [14]  OYELADE  A,  ABIODUN  Y,  SADIQ  M  O.  Dynamic  behaviour  of  concrete  containing  aggregate  resonant  frequency  [J].
                    Journal of Computational Applied Mechanics, 2018, 49(2): 380–385. DOI: 10.22059/JCAMECH.2018.269048.339.
               [15]  HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International
                    Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
               [16]  LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16):
                    165116. DOI: 10.1103/PhysRevB.65.165116.
               [17]  吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602.
                    DOI: 10.7498/aps.65.064602.
                    WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally
                    resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
               [18]  EURO C. CEB-FIP model code 1990 [Z]. Lausanne, Switzerland: Thomas TelFord Sevices Ltd., 1993. DOI: 10.1680/ceb-
                    fipmc1990.35430.
               [19]  MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete [R]. Port Hueneme CA: Naval Facilities Engineering
                    Service Center, 1998.
               [20]  LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014,
                    68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.
               [21]  WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of
                    concrete [J]. International Journal of Impact Engineering, 2005, 32(1): 605–617. DOI: 10.1016/j.ijimpeng.2005.05.008.
                                                                                          (责任编辑    蔡国艳)






                                                         023201-15
   57   58   59   60   61   62   63   64   65   66   67