Page 277 - 《软件学报》2020年第9期
P. 277

2898                                 Journal of Software  软件学报 Vol.31, No.9,  September 2020

         [11]    Bazzani L, Cristani M, Murino V. Symmetry-Driven accumulation of local features for human characterization and re-identification.
             Computer Vision and Image Understanding, 2013,117(2):130−144.
         [12]    Gray D, Tao H. Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Proc. of the European Conf.
             on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2008. 262−275.
         [13]    Paisitkriangkrai S, Shen CH, Van Den Hengel A. Learning to rank in person re-identification with metric ensembles. In: Proc. of
             the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 1846−1855.
         [14]    Liao SC, Li SZ. Efficient PSD constrained asymmetric metric learning for person re-identification. In: Proc. of the IEEE Int’l Conf.
             on Computer Vision. 2015. 3685−3693.
         [15]    Xiong F,  Gou M,  Camps  O,  Sznaier  M. Person re-identification using  kernel-based  metric learning  methods. In: Proc. of the
             European Conf. on Computer Vision. Cham: Springer-Verlag, 2014. 1−16.
         [16]    Liu CX, Change Loy C, Gong SG, Wang GJ. Pop: Person re-identification post-rank optimization. In: Proc. of the IEEE Int’l Conf.
             on Computer Vision. 2013. 441−448.
         [17]    Karanam S, Li Y, Radke RJ. Person re-identification with discriminatively trained viewpoint invariant dictionaries. In: Proc. of the
             IEEE Int’l Conf. on Computer Vision. 2015. 4516−4524.
         [18]    Zhang  L,  Xiang  T,  Gong SG.  Learning a discriminative null space  for person re-identification. In: Proc. of the IEEE  Conf. on
             Computer Vision and Pattern Recognition. 2016. 1239−1248.
         [19]    Chen  DP,  Yuan  ZJ,  Hua  G,  Zheng  NN, Wang JD. Similarity learning on an  explicit polynomial kernel feature  map for person
             re-identification. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 1565−1573.
         [20]    Chen BH, Deng WH, Hu JN. Mixed high-order attention network for person re-identification. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision. 2019. 371−381.
         [21]    Xia BN, Gong Y, Zhang YZ, Poellabauer C. Second-Order non-local attention networks for person re-identification. In: Proc. of the
             IEEE Int’l Conf. on Computer Vision. 2019. 3760−3769.
         [22]    Fang PF, Zhou JM, Roy SK, Petersson L, Harandi M. Bilinear attention networks for person retrieval. In: Proc. of the IEEE Int’l
             Conf. on Computer Vision. 2019. 8030−8039.
         [23]    Chen TL, Ding SJ, Xie JY, Yuan Y, Chen WY, Yang Y, Ren Z, Wang ZY. Abd-Net: Attentive but diverse person re-identification.
             In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2019. 8351−8361.
         [24]    Chen GY, Lin CZ, Ren LL, Lu JW, Zhou J. Self-Critical attention learning for person re-identification. In: Proc. of the IEEE Int’l
             Conf. on Computer Vision. 2019. 9637−9646.
         [25]    Tay  CP, Roy S,  Yap  KH.  AANet: Attribute  attention network for person re-identifications.  In: Proc. of  the IEEE  Conf. on
             Computer Vision and Pattern Recognition. 2019. 7134−7143.
         [26]    Zheng M, Karanam S, Wu ZY, Radke RJ. Re-Identification with consistent attentive siamese networks. In: Proc. of the IEEE Conf.
             on Computer Vision and Pattern Recognition. 2019. 5735−5744.
         [27]    Li W,  Zhu XT, Gong SG.  Harmonious  attention network for person re-identification. In: Proc. of the IEEE  Conf. on  Computer
             Vision and Pattern Recognition. 2018. 2285−2294.
         [28]    Si JL, Zhang HG, Li CG, Kuen J, Kong XF, Kot AC, Wang G. Dual attention matching network for context-aware feature sequence
             based person re-identification. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 5363−5372.
         [29]    Hermans A, Beyer L, Leibe B. In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017.
         [30]    Zhang YY, Zhong QY, Ma L, Xie D, Pu SL. Learning incremental triplet margin for person re-identification. In: Proc. of the AAAI
             Conf. on Artificial Intelligence, Vol.33. 2019. 9243−9250.
         [31]    Chen WH, Chen XT, Zhang JG, Huang KQ. Beyond triplet loss: A deep quadruplet network for person re-identification. In: Proc.
             of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 403−412.
         [32]    Zheng ZD, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: Proc.
             of the IEEE Int’l Conf. on Computer Vision. 2017. 3754−3762.
         [33]    Sun  YF,  Zheng  L,  Yang  Y, Tian  Q, Wang SJ.  Beyond part  models: Person retrieval with refined part pooling (and  a  strong
             convolutional baseline). In: Proc. of the European Conf. on Computer Vision (ECCV). 2018. 480−496.
   272   273   274   275   276   277   278   279   280   281   282