Page 200 - 《软件学报》2020年第9期
P. 200

张策  等:可靠性模型中故障检测率研究述评                                                            2821


         模型提供了有效选择,也为可靠性模型在工程中的应用带来机遇.
         6.2.5  根据 FDR 对测试策略实施有效指导
             FDR 对测试环境的描述能力直接反映在故障被检测出来的故障数量与效率上,因此,有效的 FDR 也应该为
         实际测试过程给出建议,用以调整测试策略,更加合理地分配测试资源.当前研究中,尚未有从 FDR 的角度对测
         试工作量(TE)分配、测试过程管理等进行具体的研究,这成为亟待突破的研究内容.

         7    结束语

             故障检测率 FDR 与可靠性的建模与度量紧密相关,是软件测试过程中测试技术综合运用取得的结果,既可
         以从测试覆盖的角度进行建模,也可以融合测试工作量 TE 因素,还可以直接根据实际进行设定.可以看出:FDR
         是可靠性建模、增长、度量、系统发布的重要构成要素,是用以支撑可靠性研究与增强可靠性增长的重要内容,
         推动了以 SRGM 为核心的可靠性研究的深入发展.
             本文对可靠性模型中故障检测率的研究进行了全面述评,包括可靠性建模的关键要素 FDR 的功能、与失
         效强度和冒险率的关联、多视角下的分类、不完美排错下的性能分析以及未来研究趋势等.期望我们的工作能
         为可靠性研究,特别是 FDR 的研究提供有益的借鉴和参考,并为推动可靠性相关的研究与应用向前发展做出积
         极贡献.


         致谢   在此,我们向本文参考文献中研究人员所做的大量基础工作表示真诚感谢!对本文在写作与完善工作过
         程中给予无私支持和提供宝贵建议意见的同行致谢.特别感谢审稿人,他们提出的宝贵意见和建议对于本文整
         体水平的提高有很大帮助.

         References:
          [1]    Zhang C, Meng FC,  Kao YG,  et  al. Survey of software reliability growth  model.  Ruan  Jian  Xue  Bao/Journal of Software,
             2017,28(9):2402−2430  (in Chinese with English abstract).  http://www.jos.org.cn/1000-  9825/5306.htm [doi:  10.13328/j.cnki.jos.
             005306]
          [2]    Zhang  C, Cui G, Liu HW,  et  al.  Component-Based software reliability process technologies.  Chinese Journal of  Computers,
             2014,37(12):2586−2612 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2014.02586]
          [3]    Lee TQ, Yeh CW, Fang CC. Bayesian software reliability prediction based on yamada delayed s-shaped model. Applied Mechanics
             and Materials, 2014,490:1267−1278. [doi: 10.4028/www.scientific.net/AMM.490-491.1267]
          [4]    Almering V,  van Genuchten  M, Cloudt G,  et  al.  Using software  reliability growth  models in practice. IEEE Software,
             2007,24(6):82−88. [doi: 10.1109/MS.2007.182]
          [5]    Cinque  M, Cotroneo D,  Pecchia A,  et  al.  Debugging-workflow-aware software  reliability  growth analysis. Software Testing
             Verification and Reliability, 2017,27(1):e1638. [doi: 10.1002/stvr.1638]
          [6]    Zhang C, Meng FC, Cui G, et al. Overview of modeling of TE in SRGM and comparisons for models. Journal of Harbin Institute of
             Technology, 2015,47(5):32−39 (in Chinese with English abstract). [doi: 10.11918/j.issn.0367-6234.2015.05. 006]
          [7]    Zhang  C,  Meng FC, Wan K,  et  al.  Analysison SRGM  modeling  categories  and performances. Journal of  Harbin Institute of
             Technology, 2016,48(8):171−178 (in Chinese with English abstract). [doi: 10.11918/j.issn.0367-6234.2016.08. 029]
          [8]    Goel L, Okumoto K. Time-Dependent error-detection rate model for software reliability and other performance measures. IEEE
             Trans. on Reliability, 1979,R-28(3):206−211. [doi: 10.1109/TR.1979.5220566]
          [9]    Liu HW, Yang XZ, Qu F, et al. A software reliability growth model with bell shaped fault detection rate function. Chinese Journal
             of Computers, 2005,28(5):908−913 (in Chinese with English abstract). [doi: 10.3321/j.issn:0254-4164.2005.05.020]
         [10]    Song  KY,  Chang  IH, Pham  H.  A three-parameter fault-detection software reliability  model  with the uncertainty of operating
             environments. Journal of Systems Science and Systems Engineering, 2017,26(1):121−132. [doi: 10.1007/s11518-016-5322-4]
         [11]    Pham H. A generalized fault-detection software reliability model subject to random operating environments. Vietnam Journal of
             Computer Science, 2016,3(3):145−150. [doi: 10.1007/s40595-016-0065-1]
         [12]    Xu JJ, Yao SZ.  Characterizing uncertainty of software reliability growth  model.  Ruan Jian Xue  Bao/Journal  of Software, 2017,
             28(7):1746−1758 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5108.htm [doi: 10.13328/j.cnki.jos.005108]
   195   196   197   198   199   200   201   202   203   204   205