Page 49 - 《软件学报》2020年第12期
P. 49
陈劲松 等:基于多维上下文感知图嵌入模型的兴趣点推荐 3715
[18] Gao H, Tang J, Hu X, Liu H. Exploring temporal effects for location recommendation on location-based social networks. In: Proc.
of the 7th ACM Conf. on Recommender Systems. New York: ACM, 2013. 93−100. [doi: 10.1145/2507157.2507182]
[19] Li X, Jiang M, Hong T, Liao L. A time-aware personalized point-of-interest recommendation via high-order tensor factorization.
ACM Trans. on Information Systems, 2017,35(4):Article 31. [doi: 10.1145/3057283]
[20] Zhao X, Li X, Liao L, Song D, Cheung WK. Crafting a time-aware point-of-interest recommendation via pairwise interaction
tensor factorization. In: Proc. of the 8th Int’l Conf. on Knowledge Science, Engineering and Management. Chongqing: Springer,
2015. 458−470. [doi: 10.1007/978-3-319-25159-2_41]
[21] Zhang JD, Chow CY. TICRec: A probabilistic framework to utilize temporal influence correlations for time-aware location
recommendations. IEEE Trans. on Services Computing, 2016,9(4):633−646. [doi: 10.1109/TSC.2015.2413783]
[22] Feng S, Li X, Zeng Y, Cong G, Chee YM, Yuan Q. Personalized ranking metric embedding for next new POI recommendation. In:
Proc. of the 24th Int’l Joint Conf. on Artificial Intelligence. California: AAAI, 2015. 2069−2075. [doi: 978-1-57735-738-4]
[23] Xie M, Yin H, Wang H, Xu F, Chen W, Wang S. Learning graph-based POI embedding for location-based recommendation. In:
Proc. of the 25th ACM Int’l on Conf. on Information and Knowledge Management. New York: ACM, 2016. 15−24. [doi: 10.1145/
2983323.2983711]
[24] Yin H, Zhou X, Cui B, Wang H, Zheng K, Nguyen QVH. Adapting to user interest drift for POI recommendation. IEEE Trans. on
Knowledge and Data Engineering, 2016,28(10):2566−2581. [doi: 10.1109/TKDE.2016.2580511]
[25] Jiang S, Qian X, Shen J, Fu Y, Mei T. Author topic model-based collaborative filtering for personalized POI recommendations.
IEEE Trans. on Multimedia, 2015,17(6):907−918. [doi: 10.1109/TMM.2015.2417506]
[26] Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. LINE: Large-scale information network embedding. In: Proc. of the 24th Int’l
Conf. on World Wide Web. New York: ACM, 2015. 1067−1077. [doi: 10.1145/2736277.2741093]
[27] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality.
In: Proc. of the 27th Annual Conf. on Neural Information Processing Systems. New York: Curran Associates, 2013. 3111−3119.
[28] Niu F, Recht B, Re C, Wright SJ. HOGWILD: A lock-free approach to parallelizing stochastic gradient descent. In: Proc. of the
25th Annual Conf. on Neural Information Processing Systems. New York: Curran Associates, 2011. 693−701.
[29] Li AQ, Ahmed A, Ravi S, Smola JA. Reducing the sampling complexity of topic models. In: Proc. of the 20th ACM SIGKDD Int’l
Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2014. 891−900. [doi: 10.1145/2623330.2623756]
附中文参考文献:
[1] 孟祥武,胡勋,王立才,张玉洁.移动推荐系统及其应用.软件学报,2013,24(1):91−108. http://www.jos.org.cn/1000-9825/4292.htm
[doi: 10.3724/SP.J.1001.2013.04292]
[3] 任星怡,宋美娜,宋俊德.基于位置社交网络的上下文感知的兴趣点推荐.计算机学报,2017,40(4):824−841. [doi: 10.11897/SP.J.
1016.2017.00824]
陈劲松(1995-),男,硕士生,主要研究领域 纪威宇(1987-),男,硕士,CCF 学生会员,
为推荐系统. 主要研究领域为数据挖掘,机器学习,推荐
系统.
孟祥武(1966-),男,博士,教授,博士生导 张玉洁(1969-),女,硕士,副教授,主要研
师,CCF 高级会员,主要研究领域为网络服 究领域为网络服务,用户需求,推荐服务.
务,用户需求,推荐服务.