Page 119 - 《软件学报》2020年第12期
P. 119

于东  等:中文文本蕴含类型及语块识别方法研究                                                          3785


         [19]    Matsuyoshi S, Miyao Y, Shibata T, et al. Overview of the NTCIR-11 recognizing inference in text and validation (RITE-VAL) task.
             In: Proc. of the 11th NII Test Collection for Information Retrieval Workshop. 2014. 223−232.
         [20]    Williams A, Nangia N, Bowman  SR. A  broad-coverage challenge corpus  for  sentence  understanding through  inference. arXiv
             preprint arXiv:1704.05426, 2017.
         [21]    Demszky D, Guu K, Liang P. Transforming question answering datasets into natural language inference datasets. arXiv preprint
             arXiv:1809.02922, 2018.
         [22]    https://github.com/blcunlp/CNLI
         [23]    https://github.com/liuhuanyong/ChineseTextualInference
         [24]    Ren  H.  Research  on annotation of linguistic phenomena for  Chinese text reasoning. Journal of  Henan Institute of Science  and
             Technology, 2017,37(7):75−78 (in Chinese with English abstract).
         [25]    Bentivogli L, Cabrio E, Dagan I, et al. Building textual entailment specialized data sets: A methodology for isolating linguistic
             phenomena relevant to inference. In: Proc. of the LREC 2010. 2010.
         [26]    De Marneffe MC, Rafferty AN, Manning CD. Finding contradictions in text. In: Proc. of the HLT, Association for Computational
             Linguistics (ACL 2008). Columbus, 2008. 1039−1047.
         [27]    Iftene A. UAIC participation at RTE4. In: Proc. of the 1st Text Analysis Conf. (TAC). 2008. 35, 104, 105.
         [28]    MacCartney  B,  Manning  CD.  Natural logic  and natural language inference. In: Proc. of the  Computing Meaning.  Dordrecht:
             Springer-Verlag, 2014. 129−147.
         [29]    Wang S, Jiang J. Learning natural language inference with LSTM. arXiv preprint arXiv:1512.08849, 2015.
         [30]    Sammons  M, Vydiswaran VGV, Vieira T,  et  al.  Relation  alignment for textual  entailment recognition. In:  Proc. of the  Text
             Analysis Conf. (TAC). 2009.
         [31]    Tsuchida M,  Ishikawa K.  IKOMA at TAC2011: A method  for  recognizing  textual entailment  using  lexical-level and  sentence
             structure-level features. In: Proc. of the Text Analysis Conf. (TAC). 2011.
         [32]    Blunsom P, Camburu OM, Lukasiewicz T, et al. e-SNLI: Natural language inference with natural language explanations. arXiv
             preprint arXiv: 1812.01193, 2018.
         [33]    Liu MF, Li Y, Ji DH. Event  semantic feature  based Chinese textual entailment  recognition.  Journal  of Chinese Information
             Processing, 2013,27(5):129−136 (in Chinese with English abstract).
         [34]    Tan YM,  Liu SW,  Lv  XQ. CNN  and  BiLSTM based  Chinese textual  entailment recognition. Journal of  Chinese Information
             Processing, 2018,32(7):11−19 (in Chinese with English abstract).
         [35]    Jin TH, Jiang  S, Yu D,  et  al.  Chinese  chunked-based heterogeneous  entailment parser  and boundary identification. Journal of
             Chinese Information Processing, 2019,33(2):17−25 (in Chinese with English abstract).
         [36]    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proc. of the Neural Information Processing Systems (NIPS).
             2017. 5998−6008.
         [37]    Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans. on Signal Processing, 1997,45(11):2673−2681.
         [38]    Graves A, Schmidhuber J. Framewise phoneme  classification  with bidirectional  LSTM  and other neural network  architectures.
             Neural Networks, 2005,18(5-6):602−610.
         [39]    Lafferty J, McCallum A, Pereira FCN. Conditional random fields: Probabilistic models for segmenting and labeling sequence data.
             In: Proc. of the ICML. 2001. 282−289.
         [40]    Lample G, Ballesteros M,  Subramanian  S,  et  al. Neural architectures  for  named entity recognition. arXiv  preprint arXiv:1603.
             01360, 2016.

         附中文参考文献:
          [1]  郭茂盛,张宇,刘挺.文本蕴含关系识别与知识获取研究进展及展望.计算机学报,2017,40(4):889−910. http://cjc.ict.ac.cn/online/
             onlinepaper/gms-201745180721.pdf [doi: 10.11897/SP.J.1016.2017.00889]
          [2]  李继民.国内外语块研究述评.山东外语教学,2011,32(5):17−23.
         [24]  任函.面向汉语文本推理的语言现象标注规范研究.河南科技学院学报,2017,37(7):75−78.
         [33]  刘茂福,李妍,姬东鸿.基于事件语义特征的中文文本蕴含识别.中文信息学报,2013,27(5):129−136.
   114   115   116   117   118   119   120   121   122   123   124